|
2. 由于原不等式左边任意两个括号的和 为正,故三个括号中至多一个非正.
因此, 不妨假设三个括号都为正.
令 $k=a b c, a^3=\frac{k x}{y}, b^3=\frac{k y}{z}, c^3=\frac{k z}{x}$.
则原式左边
$$
=\frac{\left(k^2 x+z-k y\right)\left(k^2 y+x-k z\right)\left(k^2 z+y-k x\right)}{k^3 x y z} \text {. }
$$
令 $k^2 x+z-k y=u, k^2 y+x-k z=v$, $k^2 z+y-k x=w$.
则 $x=\frac{k u+v}{k^3+1}, y=\frac{k v+w}{k^3+1}, z=\frac{k w+u}{k^3+1}$.
故原式左边
$$
=\frac{u v w\left(1+k^3\right)^3}{k^3(k u+v)(k v+w)(k w+u)} .
$$
注意到,
\begin{aligned}
& (k u+v)(k v+w)(k w+u) \\
= & \left(1+k^3\right) u v w+\left(v^2 w+w^2 u+u^2 v\right) k^2+ \\
& \left(w^2 v+v^2 u+u^2 w\right) k \\
\geqslant & \left(1+k^3\right) u v w+3 u v w k^2+3 u v w k \\
= & u v w(k+1)^3 .
\end{aligned}则原式左边
$$
\leqslant \frac{\left(1+k^3\right)^3}{k^3(k+1)^3}=\left(k+\frac{1}{k}-1\right)^3 \text {. }
$$ |
|