Forgot password
 Register account
View 2175|Reply 13

[函数] 求三角式的最小值

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2018-12-10 15:58 |Read mode
Last edited by lemondian 2018-12-10 17:131.已知$x\in(0,\frac{\pi}{2})$,求$y=2sin^4x+3cos^4x$的最小值。
2.已知$x\in(0,\frac{\pi}{2})$,求$y=2sin^3x+cos^4x$的最小值。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-12-10 17:06
1. CS
2. 求导

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2018-12-10 17:13
回复 2# kuing
真简洁!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-12-10 17:22
简单题何必详写

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2018-12-10 17:27
回复 4# kuing

那么,已知$x\in(0,\frac{\pi}{2}),A,B>0,m,n\inN,且m,n>2$,求$y=Asin^mx+Bcos^nx$的最小值。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-12-10 17:29
回复 5# lemondian

就知道你会这样然而这样一变就变成高次方程没得玩,依然不用写……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2018-12-18 22:27
第一楼的题还可以配均值(即配恰当的常数),使正弦和余弦均降为2次方,并且系数还相同,加起来就是定值啦!

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2018-12-18 23:09
回复 7# 其妙
还是贴一下解法,并且把题目出处也说出来(建议楼主以后也这样),免得说过嘴瘾
blog6.png

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2018-12-19 19:38
话说,求导如何操作?
业余的业余 posted 2018-12-20 00:58
$\cos^4 x=(1-\sin^2 x)^2=1-2\sin^2 x+\sin^4 x$

第一个 是关于 $t=\sin^2 x \in(0,1)$ 二次函数, 容易。

第二个 令 $t=\sin x\in(0,1)$, 整理后 $y=t^4+2t^3-2t^2+1$, $y'=4t^3+6t^2-4t=2t(2t^2+3t-2)=2t(2t-1)(t+2)$, 唯一在定义域内的驻点是 $t=1/2$, 比较 $y(t=0), y(t=1/2), y(t=1)$, 最大值是函数的最大值,最小值是函数的最小值,边界处的值是极限值,不(一定)能取到。

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2018-12-20 13:26
回复 10# 业余的业余
嗯,亲民解法。
业余的业余 posted 2018-12-20 13:42
回复 11# 敬畏数学

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2018-12-20 14:29
回复 10# 业余的业余
谢谢!
业余的业余 posted 2018-12-21 01:22
回复 13# lemondian

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:07 GMT+8

Powered by Discuz!

Processed in 0.015244 seconds, 26 queries