Forgot password?
 Create new account
View 1583|Reply 3

[几何] 二次曲面截线的焦点轨迹

[Copy link]

67

Threads

435

Posts

4269

Credits

Credits
4269

Show all posts

hejoseph Posted at 2018-12-13 11:26:41 |Read mode
若已知一个二次曲面以及一定点,过这个定点的动平面截这个二次曲面得到的二次曲线的焦点形成的轨迹是什么呢?

67

Threads

435

Posts

4269

Credits

Credits
4269

Show all posts

 Author| hejoseph Posted at 2018-12-13 14:17:47
这个问题是由下面这个问题得到的,但是比下面的这个问题难做很多:

\[
f(x,y,z)=a_{11}x^2+a_{22}y^2+a_{33}z^2+2a_{12}xy+2a_{13}xz+2a_{23}yz+2a_{14}x+2a_{24}y+2a_{34}z+a_{44},
\]
再令
\[
f_x(x,y,z)=\frac{\partial f}{\partial x},f_y(x,y,z)=\frac{\partial f}{\partial y},f_z(x,y,z)=\frac{\partial f}{\partial z},
\]
则过定点 $P\left(x_0,y_0,z_0\right)$ 的平面截二次曲面 $f(x,y,z)=0$ 得到的二次曲线的中心形成的轨迹方程是
\[
f_x(x,y,z)\left(x-x_0\right)+f_y(x,y,z)\left(y-y_0\right)+f_z(x,y,z)\left(z-z_0\right)=0
\]

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2024-12-20 03:39:04
hejoseph 发表于 2018-12-13 06:17
下面的这个问题难做很多
确实!焦点的轨迹比中心的轨迹更难。

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2024-12-20 04:12:04
hejoseph 发表于 2018-12-13 06:17
则过定点 $P\left(x_0,y_0,z_0\right)$ 的平面截二次曲面 $f(x,y,z)=0$ 得到的二次曲线的中心形成的轨迹方程是
\[
f_x(x,y,z)\left(x-x_0\right)+f_y(x,y,z)\left(y-y_0\right)+f_z(x,y,z)\left(z-z_0\right)=0
\]

交换$(x_0,y_0,z_0)$与$(x,y,z)$得到:
若一个平面截二次曲面 $f(x,y,z)=0$ 得到的二次曲线的中心是$(x_0,y_0,z_0)$,则该平面为
\[
f_x(x_0,y_0,z_0)\left(x-x_0\right)+f_y(x_0,y_0,z_0)\left(y-y_0\right)+f_z(x_0,y_0,z_0)\left(z-z_0\right)=0
\]

手机版Mobile version|Leisure Math Forum

2025-4-21 22:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list