Forgot password?
 Create new account
View 801|Reply 2

一道有关对数函数的定积分

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2018-12-14 11:42:34 |Read mode
Last edited by 青青子衿 at 2018-12-20 00:17:00\[ \int_0^{y_0}\ln\left(1-x-y+\sqrt{x^2+y^2+\left(1-x-y\right)^2}\,\right){\rm\,d}y \]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2018-12-14 14:24:12
Last edited by 青青子衿 at 2018-12-14 17:13:00\begin{align*}
&&&\dfrac{\rm\,d}{{\rm\,d}y}\ln\left(1-x-y+\sqrt{x^2+y^2+\left(1-x-y\right)^2}\,\right)\\
&&=&\,\dfrac{-1-\frac{1-x-2y}{\sqrt{x^2+y^2+\left(1-x-y\right)^2}}}{1-x-y+\sqrt{x^2+y^2+\left(1-x-y\right)^2}}\\
&&=&\,-\,\frac{\sqrt{x^2+y^2+\left(1-x-y\right)^2}+\left(1-x-2y\right)}{\sqrt{x^2+y^2+\left(1-x-y\right)^2}}\cdot\dfrac{\sqrt{x^2+y^2+\left(1-x-y\right)^2}-\left(1-x-y\right)}{x^2+y^2+\left(1-x-y\right)^2-\left(1-x-y\right)^2}\\
&&=&\,\frac{y-\sqrt{x^2+y^2+\left(1-x-y\right)^2}-\left(1-x-y\right)}{\sqrt{x^2+y^2+\left(1-x-y\right)^2}}\cdot\dfrac{\sqrt{x^2+y^2+\left(1-x-y\right)^2}-\left(1-x-y\right)}{x^2+y^2}\\
&&=&\,\frac{y\sqrt{x^2+y^2+\left(1-x-y\right)^2}-\left(y-xy-y^2\right)-\left(x^2+y^2\right)}{\left(x^2+y^2\right)\sqrt{x^2+y^2+\left(1-x-y\right)^2}}\\
&&=&\,\frac{y\sqrt{x^2+y^2+\left(1-x-y\right)^2}-y+xy-x^2}{\left(x^2+y^2\right)\sqrt{x^2+y^2+\left(1-x-y\right)^2}}\\
&&=&\,\frac{y}{x^2+y^2}-\,\frac{\left(1-x\right)y}{\left(x^2+y^2\right)\sqrt{x^2+y^2+\left(1-x-y\right)^2}}-\frac{x^2}{\left(x^2+y^2\right)\sqrt{x^2+y^2+\left(1-x-y\right)^2}}\\
&&=&\,\frac{y}{x^2+y^2}-\,\frac{x^2+\left(1-x\right)y}{\left(x^2+y^2\right)\sqrt{x^2+y^2+\left(1-x-y\right)^2}}\\
\end{align*}

\begin{align*}
&&&\int_0^{y_0}\frac{y^2}{x^2+y^2}{\rm\,d}y\\
&&=&\int_0^{y_0}\frac{x^2+y^2}{x^2+y^2}{\rm\,d}y-\int_0^{y_0}\frac{x^2}{x^2+y^2}{\rm\,d}y\\
&&=&\,y_{\overset{\,}{0}}-\int_0^{y_0}\frac{x^2}{x^2+y^2}{\rm\,d}y=\,y_{\overset{\,}{0}}-x\int_0^{y_0}\frac{1}{1+\left(\frac{y}{x}\right)^2}{\rm\,d}\left(\frac{y}{x}\right)\\
&&=&\,y_{\overset{\,}{0}}-x\arctan\left(\frac{y_{\overset{\,}{0}}}{x}\right)\\
\end{align*}

\begin{align*}  
&&&\int_0^{y_0}\ln\left(1-x-y+\sqrt{x^2+y^2+\left(1-x-y\right)^2}\,\right){\rm\,d}y\\  
&&=\,\,&\,y_0\ln\left(1-x-y_0+\sqrt{x^2+{y_0}^2+\left(1-x-y_0\right)^2}\,\right)-\int_0^{y_0}\frac{y^2}{x^2+y^2}{\rm\,d}y\\
&&&\,+
\int_0^{y_0}\frac{x^2y+\left(1-x\right)y^2}{\left(x^2+y^2\right)\sqrt{x^2+y^2+\left(1-x-y\right)^2}}{\rm\,d}y\\
\end{align*}

\begin{align*}
&&&  
\int_0^{y_0}\frac{x^2y+\left(1-x\right)y^2}{\left(x^2+y^2\right)\sqrt{x^2+y^2+\left(1-x-y\right)^2}}{\rm\,d}y\\
&&=&
\int_0^{y_0}\frac{x^2y+\left(1-x\right)y^2}{\left(x^2+y^2\right)\sqrt{x^2+\left(1-x\right)^2+2y^2-2\left(1-x\right)y}}{\rm\,d}y\\
&&=&
\int_0^{y_0}\frac{x^2y+\left(1-x\right)y^2}{\left(x^2+y^2\right)\sqrt{x^2+\frac{\left(1-x\right)^2}{2}+2\left(y-\frac{1-x}{2}\right)^2}}{\rm\,d}y\\
&&=&  
\frac{1}{\sqrt{2\,}}\int_{-\operatorname{arsinh}\left(\frac{q}{p}\right)}^{\operatorname{arsinh}\left(\frac{y_{\overset{\,}{0}}-q}{p}\right)}
\frac{x^2\left(p\sinh\,t+q\right)+\left(1-x\right)\left(p\sinh\,t+q\right)^2}{x^2+\left(p\sinh\,t+q\right)^2}{\rm\,d}t\\

\end{align*}

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2018-12-24 10:17:17
回复 2# 青青子衿
膜拜青神

手机版Mobile version|Leisure Math Forum

2025-4-21 14:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list