Forgot password?
 Register account
View 1881|Reply 11

[不等式] 积和为定值的不等式

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-1-3 21:57 |Read mode
Last edited by 力工 2019-1-4 16:03已知非负数$a,b,c$满足$ab+bc+ca=1$,求证:$\dfrac{2}{a^2+1}+\dfrac{2}{b^2+1}+\dfrac{3}{c^2+1}\geqslant 4$.
分子不对称,如何求解?正切代换吗?求大神们指点。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-1-3 22:00
已知非负数$a,b,c$满足$ab+bc+ca=1$,求证:$\dfrac{2}{a^2+1}+\dfrac{2}{b^+1}+\dfrac{3}{c^2+1}\geqslant 4$.
分子不对称,如何求解?正切代换吗?求大神们指点。
力工 发表于 2019-1-3 21:57
第二个分母是怎么回事?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-1-3 22:03
如果第二项也是 `\dfrac{2}{b^2+1}` 的话,正切代换应该可以处理啊,你自己试过没有?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-1-3 22:56
呵呵,我用齐次化的方法试了一下之后发现:
如果第二项也是 `\dfrac{2}{b^2+1}` 的话,那么第三项的分子 3 完全是为了坑人的,因为它完全可以直接放缩为 2,即:
\begin{align*}
&\frac2{a^2+1}+\frac2{b^2+1}+\frac3{c^2+1}\\
\geqslant{}&\frac2{a^2+1}+\frac2{b^2+1}+\frac2{c^2+1}\\
={}&\frac2{(a+b)(a+c)}+\frac2{(b+c)(b+a)}+\frac2{(c+a)(c+b)}\\
={}&\frac{4(a+b+c)(ab+bc+ca)}{(a+b)(b+c)(c+a)}\\
\geqslant{}&4.
\end{align*}

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2019-1-4 16:02
回复 4# kuing
晕死,把$b^2+1$输成了$b+1$,只输了$^$,2掉了 。感谢k大神!

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

业余的业余 Posted 2019-1-6 06:27

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-1-6 10:19
其实此题不难的。把已知的C解出来(消去c),代入要求证明式子,简单分析法就出来了。有时就老想套路,哎。对称是么子意思啊。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-1-7 11:43
貌似又有一个miss.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-1-7 13:54
回复 8# 敬畏数学

啥意思……?

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2019-1-8 00:19
blog8.png blog9.png
妙不可言,不明其妙,不着一字,各释其妙!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2019-1-8 00:20
陕西李歆老师解答

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-1-8 00:26
回复 10# 其妙

嗯,加上求最大值这个 3 才有存在的价值,否则就太XX了,不过不管怎样,题还是太简单,没玩头……

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit