Forgot password?
 Register account
View 1625|Reply 3

[几何] 请教:圆与圆锥曲线的交点问题

[Copy link]

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

shidilin Posted 2019-1-8 12:41 |Read mode
①椭圆与一个圆有三个交点,则其中必有一个交点,是椭圆与圆的切点
②抛物线,双曲线是否也具有类似的性质?谢谢!
道运天地宽  丹心照气圆

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-1-8 13:00
回复 1# shidilin


    一个圆洞,从一个地方进去,从另一个地方出来,那么就是2个公共点。
不然的话,不是在洞里碰瓷,就是在洞外碰瓷,或者两不相干。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-1-8 16:11
Last edited by hejoseph 2019-1-8 16:29设 $ab\neq 0$,由 $ax^2+by^2=1$ 与 $(x-u)^2+(y-v)^2=r^2$($v\neq 0$)可得 $y=-((a-b)x^2+2bux-b(u^2+v^2-r^2)-1)/(2bv)$,$u=0$ 或 $v=0$ 时的情形很容易讨论。$ax^2+by^2=1$ 与 $(x-u)^2+(y-v)^2=r^2$ 消去 $y$。当$a\neq b$ 时得到的是一个关于 $x$ 的四次方程,若只有三个不同解,说明必定有一个重根,此时就对应相切的情形。当$a=b$ 时得到的是一个关于 $x$ 的二次方程。
同样,设 $p\neq 0$,由 $x^2=2py$ 得 $y=x^2/(2p)$,$x^2=2py$ 与 $(x-u)^2+(y-v)^2=r^2$ 消去 $y$,得到的是一个关于 $x$ 的四次方程,若只有三个不同解,说明必定有一个重根,此时就对应相切的情形。

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

 Author| shidilin Posted 2019-1-8 20:33
感谢楼上两位的答复!

Mobile version|Discuz Math Forum

2025-5-31 11:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit