Forgot password
 Register account
View 1836|Reply 2

[函数] $\ln x - mx = 0$的两根问题

[Copy link]

132

Threads

251

Posts

1

Reputation

Show all posts

郝酒 posted 2019-1-12 16:48 |Read mode
$x_1,x_2$是$\ln x-mx=0$的根,且满足$\frac{x_2}{x_1}\leq e^2$,求$x_1x_2$的最大值.

132

Threads

251

Posts

1

Reputation

Show all posts

original poster 郝酒 posted 2019-1-13 09:45
试解一下,
$x_1x_2\leq e^2x_1^2$,故要求满足条件的$x_1$的最大值.
方程转化为$\frac{\ln x}{x}=m$,结合图像可知当$x_2=e^2x_1$时,$x_1$最大,此时$\frac{\ln x_1}{x_1}=\frac{\ln x_2}{x_2}=\frac{2+\ln x_1}{e^2x_1}$,可以解得$x_1=e^{\frac{2}{e^2-1}}$,此时$x_1x_2=e^{\frac{2(e^2+1)}{e^2-1}}$.

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2019-1-14 10:34
与这两个题类似?
1141.jpg
1142.jpg

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:44 GMT+8

Powered by Discuz!

Processed in 0.014412 seconds, 25 queries