Forgot password?
 Register account
View 1827|Reply 2

[函数] $\ln x - mx = 0$的两根问题

[Copy link]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2019-1-12 16:48 |Read mode
$x_1,x_2$是$\ln x-mx=0$的根,且满足$\frac{x_2}{x_1}\leq e^2$,求$x_1x_2$的最大值.

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2019-1-13 09:45
试解一下,
$x_1x_2\leq e^2x_1^2$,故要求满足条件的$x_1$的最大值.
方程转化为$\frac{\ln x}{x}=m$,结合图像可知当$x_2=e^2x_1$时,$x_1$最大,此时$\frac{\ln x_1}{x_1}=\frac{\ln x_2}{x_2}=\frac{2+\ln x_1}{e^2x_1}$,可以解得$x_1=e^{\frac{2}{e^2-1}}$,此时$x_1x_2=e^{\frac{2(e^2+1)}{e^2-1}}$.

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2019-1-14 10:34
与这两个题类似?
1141.jpg
1142.jpg

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit