Forgot password
 Register account
View 1807|Reply 5

[函数] 求证$e^x ((\ln x)^2+3\ln(x)+3)-3x^2>0$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2019-1-12 22:16 |Read mode
Last edited by hbghlyj 2025-3-19 18:15高三模拟题,求证:$$\forall x>0,\mathrm e^x ((\ln x)^2+3\ln(x)+3) -3x^2>0.$$

临场,非临场,都搞不定,求教。

附原题——

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-1-12 23:19
这个不等式,又丑,又松,真是太…………

分类讨论即可:

当 `x>1` 时,熟知 `e^x>x^2`,所以显然成立;

当 `x<1/2` 时,因为 `t^2+3t+3\geqslant3/4`,所以左边 `>3/4-3x^2>0`;

当 `x\in[1/2,1]` 时,有 `-0.7<-\ln2\leqslant\ln x\leqslant0`,得 `\ln^2x+3\ln x+3>0.7^2-3\times0.7+3=1.39>6/5`,所以只需证 `e^x>2.5x^2`。
令 `g(x)=\sqrt{e^x}-\sqrt{2.5}x`, `x\in[1/2,1]`,则 `g'(x)=\sqrt{e^x}/2-\sqrt{2.5}\leqslant\sqrt e/2-\sqrt{2.5}<0`,所以 `g(x)\geqslant g(1)=\sqrt e-\sqrt{2.5}>0`,所以 `e^x>2.5x^2`。

综上得证。

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2019-1-13 15:16
回复 2# kuing

原来这样的“松”不等式,可首选分段喽。

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2019-1-13 16:29
无标题.png

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2019-1-13 16:37
回复 4# 游客

这图是说可以将3x^2改成7x^2吧。。。。

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2019-1-14 14:03
回复 4# 游客
可以画图吗?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:06 GMT+8

Powered by Discuz!

Processed in 0.012438 seconds, 25 queries