Forgot password
 Register account
View 913|Reply 2

[几何] 有关内心、内接圆

[Copy link]

3222

Threads

7841

Posts

52

Reputation

Show all posts

hbghlyj posted 2019-1-14 00:11 |Read mode
Last edited by hbghlyj 2025-6-25 14:58I为内心,AH为高,AI交BC于E,交外接圆于M,F在直线BC上,FM⊥AM,MH再次交外接圆于D,求证:∠IDE=∠IFM

如何证明?

56

Threads

987

Posts

41

Reputation

Show all posts

乌贼 posted 2025-6-25 00:43
设$ MF $与圆的另一交点为$ N $,$ AN $为圆直径。
1.png
第一步:先证$ NED $三点共线\[ \angle DHC=\angle DAC+\angle MAB=\angle DAC+\angle MAC=\angle DAE \]即$ ADHE $四点共圆,有\[ \angle ADE=\angle AHE=90\du  \]所以有$ NED $三点共线。
第二步:证明$ \angle MIN=\angle MFI $\[ \triangle MNC\sim \triangle MCF\riff MI^2=MC^2=MN\cdot MF\riff\triangle MIN\sim \triangle MFI\riff\angle MIN=\angle MFI \]
第三步:证明$ \angle NIE=\angle NDI $(烦人的计算)
\[ IN^2=MN^2+IM^2=EN^2-EM^2+CM^2=EN^2-EM^2+ME\cdot MA=EN^2-EM^2+ME^2+ME\cdot EA=EN^2+ME\cdot EA=EN^2+NE\cdot ED=EN(NE+ED)=EN\cdot ND \]得\[ \triangle INE\sim \triangle DNI\riff\angle IDE=\angle NIM \]
综上有\[ \angle MFI=\angle MIN=\angle IDE \]
哪的题?

56

Threads

987

Posts

41

Reputation

Show all posts

乌贼 posted 2025-6-25 12:44
2.png
省掉计算,设$ MF $与圆另一交点为$ N $,$ AN $即为圆直径,$ P $为$ FM $与$ AD $延长线交点。
第一步:先证$ NED $三点共线,见上楼
第二步:证明$ \triangle AFP $为等腰三角形且$ AP=AF $。\[ \triangle MNC\sim \triangle NCF\riff\angle MFC=\angle MCN=\angle MAN \]即$ AENF $四点共圆,有\[ \angle FAM=\angle MNE=\angle MAD\riff\triangle MFA\cong \triangle MPA\riff AF=AP \]第三步:证明$ DPNI $四点共圆。\[ \triangle MNC\sim \triangle MCF\riff MI^2=MC^2=MN\cdot MF\riff\triangle MNI\sim \triangle MIF\riff\angle MNI=\angle MIF\riff\angle MIN+\angle MNI=\angle MIN+\angle MIF=\angle MIN+\angle MIP=90\du  \]又\[ \angle NIP=\angle NDP=90\du  \]故$ DPNI $四点共圆。
综上\[ \angle IFM=\angle IPM=\angle IDE \]

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 精彩!

View Rating Log

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 08:23 GMT+8

Powered by Discuz!

Processed in 0.013905 seconds, 27 queries