Forgot password?
 Register account
View 1818|Reply 8

[几何] 平面向量的模最值

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-1-16 12:34 |Read mode
两平面单位向量e1,e2,其夹角为60°,平面向量C满足:|ce1|+|ce2|$\leqslant $1(e1,e2,c均为向量),则向量C的模最大值?(寻求用不等式方法或图形解决?)

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-1-16 16:22
参照2016浙江数学高考卷填空题。

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2019-1-16 16:30
回复 2# 游客

嗯,我也想起来了
顺便帮你给个链接吧:forum.php?mod=redirect&goto=findpost& … d=4964&pid=23757

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2019-1-16 16:45
学习一下链接中游客的解法:

设 `\bm e_3=\bm e_1+\bm e_2`, `\bm e_4=\bm e_1-\bm e_2`,由于 `\bm e_1`, `\bm e_2` 是夹角为 $60\du$ 的单位向量,所以 $\abs{\bm e_3}=\sqrt3$, $\abs{\bm e_4}=1$ 且 `\bm e_3\cdot\bm e_4=0`,而
\[
\abs{\bm c\cdot\bm e_1}+\abs{\bm c\cdot\bm e_2}
=\max\{\abs{\bm c\cdot\bm e_1+\bm c\cdot\bm e_2},
\abs{\bm c\cdot\bm e_1-\bm c\cdot\bm e_2}\}
=\max\{\abs{\bm c\cdot\bm e_3},\abs{\bm c\cdot\bm e_4}\},
\]
右边不得超过 `1`,故此 `\bm c` 在 `\bm e_3` 上的投影长度不超过 `1/\sqrt3` 且在 `\bm e_4` 上的投影长度不超过 `1`,所以其模长的最大值就是 `\sqrt{\bigl(1/\sqrt3\bigr)^2+1^2}=2/\sqrt3`。

图示如下,即 `\bm c` 的终点在矩形内(含边):
QQ截图20190116165602.png

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2019-1-16 18:03
或者换个写法,其实也没什么本质区别:
不妨设 $\bm e_1=(\cos30\du,\sin30\du)$, $\bm e_2=(\cos30\du,-\sin30\du)$, $\bm c=(x,y)$,则依题意有
\begin{align*}
1\geqslant\abs{\bm c\cdot\bm e_1}+\abs{\bm c\cdot\bm e_2}\geqslant\abs{\bm c\cdot\bm e_1+\bm c\cdot\bm e_2}=2\abs x\cos30\du&\riff\abs x\leqslant\frac1{\sqrt3},\\
1\geqslant\abs{\bm c\cdot\bm e_1}+\abs{\bm c\cdot\bm e_2}\geqslant\abs{\bm c\cdot\bm e_1-\bm c\cdot\bm e_2}=2\abs y\sin30\du&\riff\abs y\leqslant1,
\end{align*}
所以
\[
\abs{\bm c}=\sqrt{x^2+y^2}\leqslant\sqrt{\frac13+1}=\frac2{\sqrt3}.
\]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2019-1-16 20:20
回复 4# kuing

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2019-1-17 10:02

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-1-17 12:24
Last edited by hbghlyj 2025-3-19 18:15\begin{aligned}
& \vec{c}=m \vec{e}_1+n \overrightarrow{e_2}, \quad \frac{3(m+n)}{4}=u, \frac{m-n}{4}=v . \\
& \Rightarrow\left|\vec{c} \cdot \overrightarrow{e_1}\right|+\left|\vec{c} \cdot \overrightarrow{e_2}\right|=\left|m+\frac{n}{2}\right|+\left|\frac{m}{2}+n\right|=|u+v|+|u-v| \leq 1 . \\
& \Rightarrow|\vec{c}|^2=m^2+n^2+m n=\frac{4 u^2}{3}+4 v^2=4\left(\frac{u^2}{3}+v^2\right) \leq \frac{4}{3} .
\end{aligned}\begin{aligned}
& \text { 或者: }\left|m+\frac{n}{2}\right|+\left|\frac{m}{2}+n\right| \leq 1 \Rightarrow\left\{\begin{array}{l}
|m+n| \leq \frac{2}{3} \\
|m-n| \leq 2
\end{array}\right. \\
& \Rightarrow|\bar{c}|^2=m^2+n^2+m n=\frac{3}{4}(m+n)^2+\frac{1}{4}(m-n)^2 \leq \frac{4}{3} .
\end{aligned}

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2019-1-17 19:54
回复 8# 游客
好办法!可以直接设u=m+n,v=m-n,免得开始那个设,有点力度过大。那个链接里的不等式处理牛!哈哈,竟然忘记。

Mobile version|Discuz Math Forum

2025-6-1 19:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit