Forgot password?
 Register account
View 2168|Reply 6

[不等式] 一道多元不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2019-1-18 15:46 |Read mode
Last edited by lemondian 2019-1-21 16:26设$a_1,a_2,\cdots ,a_n>0$,若$a_1+a_2+\cdots +a_n=\frac{1}{a_1}+\frac{1}{a_2}+\cdots +\frac{1}{a_n}$。求证:$a^n_1+a^n_2+\cdots +a^n_n+(n^2-n)a_1a_2\cdots a_n\geqslant n^2$。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-1-19 13:58
不等式基本不会,但还是建议先考虑n=3和4时的情况,
下面这个结论不知道是否能起作用:
未命名.PNG

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-1-20 15:10
回复 2# 游客


    可以把原题转化为求证如下的命题:

未命名1.PNG

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-1-21 14:26
三元的证明:
QQ截图20190121142535.jpg

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-1-21 15:49
回复 4# lemondian


    一个2次,另一个3次,这个题跟主楼的题是不一样的。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-1-21 16:27
回复 5# 游客

擦,主楼我居然打错了,已修正!
kuing神还没发觉。。。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-1-21 16:35
回复 6# lemondian

因为我只是看了一会,没动笔,也幸亏没动,不然又被坑一回

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit