Forgot password?
 Register account
View 991|Reply 0

有偿求助

[Copy link]

1

Threads

0

Posts

0

Reputation

Show all posts

cdzx11 posted 2019-2-10 23:43 |Read mode
Last edited by cdzx11 2019-2-11 01:17需要求几个曲边梯形面积,需要带参数的表达式,有意者请与我联系
其中,参数方程1为:
$x=sin(nt-φ)+k sin(t-φ)+l\frac{n sin(nt-φ)+k sin(t-φ)}{\sqrt{n^2+2nkcos((n-1)t)+k^2}}+sin((n-1)φ)$
$y=cos(nt-φ)+k cos(t-φ)+l\frac{n cos(nt-φ)+k cos(t-φ)}{\sqrt{n^2+2nkcos((n-1)t)+k^2}}+cos((n-1)φ)$
定义域为:$t=(φ-\frac{\pi}{n},φ-\frac{\pi}{n})$
式中,$n,k,l,φ$均为参变量,计算时当作常量处理,$t$为自变量

参数方程2:
$x=ksin(2t)+\frac{n}{2k}(sin((2n+2)t)+sin((2n-2)t))+(sin((n+2)t)-sin((n-2)t))\sqrt{1-\frac{n^2 sin^2(nt)}{k^2}}$
$y=kcos(2t)+\frac{n}{2k}(cos((2n+2)t)-cos((2n-2)t))+(cos((n+2)t)+cos((n-2)t))\sqrt{1-\frac{n^2 sin^2(nt)}{k^2}}$
定义域为:$t=(\frac{\pi}{2n},\frac{\pi}{2n})$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 10:28 GMT+8

Powered by Discuz!

Processed in 0.016380 second(s), 22 queries

× Quick Reply To Top Edit