Forgot password?
 Register account
View 1823|Reply 5

[不等式] 一道不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2019-2-21 17:20 |Read mode
当$0<a\leqslant b$时,证明:$alna+blnb\geqslant (a+b)[ln(a+b)-ln2]$.
我用了琴生不等式可以证明,请教大家还有什么其它证法?
多然证法越多越好啦

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-2-21 19:05
撸题集 FAQ 27 提过“用基本方法就可以证明,将其中一个变量看成常数,对另一个变量求导即可”,以前在人教有讨论,不过那边现在估计是挂了,好在以前相当有预见性地截图存了档:
QQ截图20190221190429.jpg

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-2-21 19:58

晕了车,转移位置了。

Last edited by 力工 2019-2-21 21:31 (1)斜三角形$ABC$中,证明:$\dfrac{cosA}{sin^2A}+\dfrac{cosB}{sin^2B}+\dfrac{cosC}{sin^2C}\geqslant 2$.
(2)已知$a,b,c>-1$,证明:$\dfrac{1+a^2}{1+a+b^2}+\dfrac{1+b^2}{1+b+c^2}+\dfrac{1+c^2}{1+c+a^2}\geqslant 2$.
(3)已知$a,b,c>0,a+b+c=3$,证明:$\dfrac{a^2}{a+3b^4}+\dfrac{b^2}{b+3c^4}+\dfrac{c^2}{c+3a^4}\geqslant \dfrac{3}{4}$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-2-21 20:24
回复 3# 力工

?你是不是把回复按钮当作发帖按钮了

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-2-21 21:27
回复 4# kuing
晕车了。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-2-21 21:29
回复 5# 力工

我还没开车呢 QQ图片20180126155930.gif 你晕什么车

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit