Forgot password?
 Register account
View 3304|Reply 6

[数列] 数列通项$4S_n=(a_{n-1}+3)^2$

[Copy link]

20

Threads

9

Posts

163

Credits

Credits
163

Show all posts

wzyl1860 Posted 2019-2-23 13:30 |Read mode
Last edited by hbghlyj 2025-5-10 17:08已知正项数列 $\an$ 满足 $a_1=1$,前 $n$ 项和 $S_n$ 满足 $4 S_n=(a_{n-1}+3)^2(n \geqslant 2, n \inN^*)$,则数列 $\an$ 的通项公式为

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-2-23 14:12
回复 1# wzyl1860
2n-1

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-2-23 14:40
老题目了,先化为$4\sqrt{s_n}=s_n-s_{n-1}+3$.

20

Threads

9

Posts

163

Credits

Credits
163

Show all posts

 Author| wzyl1860 Posted 2019-2-23 15:21
貌似有点小问题,

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-2-23 15:34
这种题就是要你猜答案而已嘛,证明也只能数归,一般性的方法应该是没有的,毕竟二阶、二次,首项若不是1,大概就没得玩了。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-2-23 15:45
回复 2# 敬畏数学
其实这样的题某些人可以秒!原本是想玩根号的,结果根号太丑不玩。

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2019-8-6 16:26
回复 2# kuing


    看来只能数归了

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit