Forgot password?
 Create new account
View 774|Reply 4

积分换元

[Copy link]

47

Threads

358

Posts

3014

Credits

Credits
3014

Show all posts

业余的业余 Posted at 2019-2-25 10:31:55 |Read mode
画出积分 $$I=\int_0^1\int_y^{\cfrac 1y} \cfrac {y^3}x e^{y^2(x^2+x^{-2}}\mathrm{d}x\mathrm{d}y$$
的积分域, 描述其在新变量 $u=xy$ 和 $v=\cfrac yx$ 下的边界,从而对 $I$ 求值。

折腾好久,终于看到一线曙光。主要是积分区域的变换有点烧脑,后来发现是 $[0,1]\times[0,1]$ (不知正确与否), 最后算出来值为  $\cfrac {(e-1)^2}4$。 请高手确认下区间转化是否正确。

如果没有换元,直接算,要求 $\int \cfrac {e^x}x \mathrm{d} x$ 型的积分,刚好看到紧下一楼的讨论,没有初等形式。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2019-2-25 15:26:26
回复 1# 业余的业余


区间没错,但最后结果应该是$\frac{(e-1)^2}{8}$,我估计你可能雅可比式出了问题

47

Threads

358

Posts

3014

Credits

Credits
3014

Show all posts

 Author| 业余的业余 Posted at 2019-2-26 04:31:50
回复 2# 战巡

谢谢!

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-2-24 06:35:03

画出积分域

$\begin{rcases}0\leq y\leq 1\\y\leq x\leq \frac{1}{y}\end{rcases}\implies$

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-2-24 07:15:15
We want to find the image of the region $\cases{0\leq y\leq 1\\y\leq x\leq \frac{1}{y}}$ under the change of variable $\cases{u=xy\\v=\frac yx}$.
Rewrite the inequalities in terms of $u,v$:$$0\le x\leq\frac{1}{y}\xRightarrow{\times y}0 \leq u \leq 1$$
$$0\le y\leq x\xRightarrow{\div x}0\le v \leq 1$$
$\therefore$ 在新变量 $u,v$ 下的边界为 $[0,1]\times[0,1]$. 和1楼所给结果相同.

1楼公式漏了)号, 应该是
$$I=\int_0^1\int_y^{\frac 1y} \frac {y^3}x e^{y^2(x^2+x^{-2})}\rmd x\rmd y$$


The Jacobian of the transformation $\begin{cases}u = xy \\ v = \frac{y}{x}\end{cases}$ is
$$
\mathbf{J} = \begin{pmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{pmatrix}
= \begin{pmatrix}
y & x \\
-\frac{y}{x^2} & \frac{1}{x}
\end{pmatrix}
$$The determinant of the Jacobian is:
$$
\det(\mathbf{J}) = y \cdot \frac{1}{x} - x \cdot \left(-\frac{y}{x^2}\right) = \frac{2y}{x}=2v
$$
The Jacobian of the inverse transformation is:
$$
\det(\mathbf{J})^{-1}=\frac1{2v}
$$
Substituting $\cases{x = \sqrt{uv}\\y = \sqrt{u\over v}}$ into the integrand and simplify:
$$\frac{y^3}{x} e^{y^2(x^2+x^{-2})}=uv^2e^{u^2+v^2} $$
Now the integral becomes
\begin{align*}\int_0^1\int_0^1uv^2e^{u^2+v^2} \times\frac1{2v}\rmd u\rmd v&=\frac12\int_0^1\int_0^1e^{u^2+v^2}uv\rmd u\rmd v\end{align*}The double integral is separable:
\begin{align*}\frac12\int_0^1\int_0^1e^{u^2+v^2}uv\rmd u\rmd v&=\frac12\left(\int_0^1e^{u^2}u\rmd u\right)\left(\int_0^1e^{v^2}v\rmd v\right)\\&=\frac12\left(\int_0^1e^{u^2}u\rmd u\right)^2\\&=\frac12\left(\frac12e^{u^2}|_0^1\right)^2
\end{align*}
$\text{Final result}=\frac{(e-1)^2}{8}=$

终于筭对了

手机版Mobile version|Leisure Math Forum

2025-4-20 22:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list