Forgot password?
 Register account
View 1726|Reply 6

[几何] 这道解析几何题有否几何方法?

[Copy link]

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

longma Posted 2019-2-26 09:27 |Read mode
Last edited by hbghlyj 2025-4-6 03:3312.已知圆 $M: x^2+(y-1)^2=1$ ,圆 $N: x^2+(y+1)^2=1$ .直线 $l_1, ~ l_2$ 分别过圆心 $M, ~ N$ ,且 $l_1$ 与圆 $M$ 相交于 $A, B$ 两点,$l_2$ 与圆 $N$ 相交于 $C, D$ 两点.点 $P$ 是椭圆 $\frac{x^2}{9}+\frac{y^2}{4}=1$ 上任意一点,则 $\overrightarrow{P A} \cdot \overrightarrow{P B}+\overrightarrow{P C} \cdot \overrightarrow{P D}$ 的最小值为 $\qquad$

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-2-26 13:24
余弦定理

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2019-2-26 13:27
请教!最后的结果就是求2OP的平方,和A,B,C,D的位置没有关系,只和P的位置有关,不知道有没有什么几何背景!

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-2-26 13:57
Last edited by hbghlyj 2025-4-6 03:33\begin{aligned}
& \overrightarrow{P A} \cdot \overrightarrow{P B}+\overrightarrow{P C} \cdot \overrightarrow{P D} \\
& =(\overrightarrow{P M}+\overrightarrow{M A}) \cdot(\overrightarrow{P M}+\overrightarrow{M B})+(\overrightarrow{P N}+\overrightarrow{N C}) \cdot(\overrightarrow{P N}+\overrightarrow{N D}) \\
& =(\overrightarrow{P M}+\overrightarrow{M A}) \cdot(\overrightarrow{P M}-\overrightarrow{M A})+(\overrightarrow{P N}+\overrightarrow{N C}) \cdot(\overrightarrow{P N}-\overrightarrow{N C}) \\
& =\left(P M^2-1\right)+\left(P N^2-1\right) \\
& =\left(O P^2+O M^2-2 O P \cdot O M \cos \angle P O M\right) \\
& +\left(O P^2+O N^2-2 O P \cdot O N \cos \angle P O N\right)-2 \\
& =2 O P^2 .
\end{aligned}

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-2-26 14:06
向量恒等式,中线长公式。套路题最近流行得很。不过此题编得ok!

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2019-2-26 14:43
回复 5# 敬畏数学

请问,你的解题过程是?能否完整些?谢谢!

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2019-2-26 14:44
回复 4# 游客
兄台,你的解题方法还是代数法

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit