Forgot password
 Register account
View 827|Reply 0

几个反正切函数复合三角函数的定积分

[Copy link]

461

Threads

952

Posts

4

Reputation

Show all posts

青青子衿 posted 2019-3-18 20:01 |Read mode
\begin{align*}
\int_0^{\frac{\pi}{2}}\arctan\left(\cos^2x\right)\mathrm{d}x\,\,&\dot{=}\,\,\int_0^{\frac{\pi}{2}}\arctan\left(\sin^2x\right)\mathrm{d}x=\frac{\pi}{2}\arctan\sqrt{\frac{\sqrt{2}-1}{2}}\\
\int_0^{\frac{\pi}{2}}\arctan\left(\sec^2x\right)\mathrm{d}x\,\,&\dot{=}\,\,\int_0^{\frac{\pi}{2}}\arctan\left(\csc^2x\right)\mathrm{d}x=\frac{\pi^2}{4}-\frac{\pi}{2}\arctan\sqrt{\frac{\sqrt{2}-1}{2}}\\
\int_0^{\frac{\pi}{2}}\arctan\left(\tan^2x\right)\mathrm{d}x\,\,&\dot{=}\,\,\int_0^{\frac{\pi}{2}}\arctan\left(\cot^2x\right)\mathrm{d}x=\frac{\pi^2}{8}\\
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 12:13 GMT+8

Powered by Discuz!

Processed in 0.019218 second(s), 21 queries

× Quick Reply To Top Edit