Forgot password?
 Create new account
View 719|Reply 0

几个反正切函数复合三角函数的定积分

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-3-18 20:01:50 |Read mode
\begin{align*}
\int_0^{\frac{\pi}{2}}\arctan\left(\cos^2x\right)\mathrm{d}x\,\,&\dot{=}\,\,\int_0^{\frac{\pi}{2}}\arctan\left(\sin^2x\right)\mathrm{d}x=\frac{\pi}{2}\arctan\sqrt{\frac{\sqrt{2}-1}{2}}\\
\int_0^{\frac{\pi}{2}}\arctan\left(\sec^2x\right)\mathrm{d}x\,\,&\dot{=}\,\,\int_0^{\frac{\pi}{2}}\arctan\left(\csc^2x\right)\mathrm{d}x=\frac{\pi^2}{4}-\frac{\pi}{2}\arctan\sqrt{\frac{\sqrt{2}-1}{2}}\\
\int_0^{\frac{\pi}{2}}\arctan\left(\tan^2x\right)\mathrm{d}x\,\,&\dot{=}\,\,\int_0^{\frac{\pi}{2}}\arctan\left(\cot^2x\right)\mathrm{d}x=\frac{\pi^2}{8}\\
\end{align*}

手机版Mobile version|Leisure Math Forum

2025-4-21 01:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list