Forgot password?
 Register account
View 1585|Reply 3

[数论] 直角边之差为一的勾股三角形

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-3-31 09:34 |Read mode
求解不定方程\(\,x^2+(x+1)^2=y^2\,\)
\begin{array}{|c|c|c|c|}  
\hline  
\begin{split}
6&=2\times3\\
&=\dfrac{3\times4}{2}
\end{split}&
\begin{split}
210&=14\times15\\
&=\dfrac{20\times21}{2}
\end{split}&
\begin{split}
7140&=84\times85\\
&=\dfrac{119\times120}{2}
\end{split}
& \cdots \\  
\hline  
\begin{split}
5^2&=4\times6+1\\
&=3^2+4^2
\end{split}&
\begin{split}
29^2&=4\times210+1\\
&=20^2+21^2
\end{split}
&
\begin{split}
169^2&=4\times7140+1\\
&=119^2+120^2
\end{split}
& \cdots \\  
\hline  
\end{array}

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2019-4-10 15:10
Last edited by 青青子衿 2019-10-15 20:10回复 1# 青青子衿
1. In Pythagorean triples where the legs differ by 1 (necessary condition):
3² + 4² = 5²
20² + 21² = 29²
119² + 120² = 169²

sites.google.com/site/tpiezas/updates07
babel.hathitrust.org/cgi/pt?id=mdp.3901503092 … view=1up&seq=151

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2019-4-11 19:58
回复 2# 青青子衿
证明不定方程\(\,\,x^2+(x+1)^2=y^2\,\,\)的一切正整数解可以写成公式
\begin{align*}
x&=\frac{1}{4}\left|\left(1+\sqrt2\right)^{2n+1}+\left(1-\sqrt2\right)^{2n+1}-2\right|\\
y&=\frac{1}{2\sqrt2}\left|\left(1+\sqrt2\right)^{2n+1}+\left(1-\sqrt2\right)^{2n+1}\right|
\end{align*}
其中\(\,n\,\)是正整数.
参考:
《初等数论 第3版》P166
作者: 闵嗣鹤,严士健

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-4-11 20:18
回复 3# 青青子衿

看了这楼,我才明白是求二元二次不定方程的正整数解。

Mobile version|Discuz Math Forum

2025-5-31 11:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit