Forgot password?
 Register account
View 1361|Reply 2

[数论] 与2019指数幂有关的同余问题

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-4-11 21:59 |Read mode
怎么较为有效率地笔算出
\begin{align*}
\left(2^{2019}+1\right)^{2019}\equiv 9^3 \pmod{2019}\,
\end{align*}
我是先求这个的:
\begin{align*}
2^{2019}+1\equiv 9 \pmod{2019}\,
\end{align*}
  1. Multicolumn[Table[Mod[(2^2019 + 1)^k, 2019], {k, 200}], {84, Automatic}]
Copy the Code

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2019-4-12 09:58
好象也这样的,质因数分解2019=3×673,
$3\mid (2^{2019}+1)$---(1)
$2^{2019}+1=8^{673}+1=8+1=9\mod 673$(因为$a^{p-1}=1\mod p$其中(a,p)=1,p为质数)
$(2^{2019}+1)^{2019}=(2^{2019}+1)^3=9^3\mod 673$
即$(2^{2019}+1)^{2019}=9^3+673k,k\in Z$
又由(1)得$3\mid k,k=3t,t\in Z$
所以$(2^{2019}+1)^{2019}=9^3+2019t,t\in Z$
即$(2^{2019}+1)^{2019}=9^3\mod 2019$

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2019-4-12 19:07
$\lambda(2019)=[\lambda(673),\lambda(3)]=672$

$x^{672+1}\equiv x\pmod{2019}$

$(2^{2019}+1)^{2019}\equiv (2^3+1)^3\equiv 9^3\pmod{2019}$

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit