Forgot password?
 Register account
View 1848|Reply 3

[几何] 两个有等长外接球半径的四面体

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-4-18 00:25 |Read mode
Last edited by 青青子衿 2019-4-18 13:12遇到一道题:
某四面体的每个面都是底边长为2,两腰长为根号6的等腰三角形,证明这类四面体有等长的外接球半径。
情形一:四面体ABCD各棱长如下
(底面为正三角形,侧棱相等的三棱锥)
|AB|=|AC|=|AD|=√6
|BC|=|CD|=|BD|=2
情形二:四面体ABCD各棱长如下
(仅有一对棱为相等,其他四棱等长)
|AB|=2=|CD|
|AC|=|AD|=|BC|=|BD|=√6
满足什么条件会有这样的巧合呢?

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2019-4-18 02:14
只有情形二

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2019-4-18 13:12
Last edited by 青青子衿 2019-4-18 16:31回复 2# 乌贼
其实我更想问的是更一般的命题
某四面体的每个面都是底边长为 a ,两腰长为 b 的等腰三角形,当a,b满足什么条件时,这类的四面体有等长的外接球半径。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2019-4-18 21:31
211.png
那就算别:\[ AO^2=AE^2+OE^2=\dfrac{a^2}{4}+\dfrac{2b^2-a^2}{8}=\dfrac{2b^2+a^2}{8} \]则当$ a,b $满足\[ 2b^2+a^2=k \](其中$ k $为正常数)时,有相同半径的外接球。

Mobile version|Discuz Math Forum

2025-5-31 10:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit