Forgot password?
 Register account
View 1930|Reply 4

[几何] 一道与三角形有关的最值

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2019-4-20 19:13 |Read mode
已知三角形$ABC$的面积为$\sqrt2+1$, 且满足$\dfrac{4}{\tan A}+\dfrac{3}{\tan B}=1$, 求边$AC$的最小值.

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2019-4-20 23:54
Last edited by hbghlyj 2025-3-22 00:10

\[ 2x(y+z)=\sqrt{2}+1\\\dfrac{4}{\dfrac{x}{y}}+\dfrac{3}{\dfrac{x}{z}}=1\riff z=\dfrac{x-4y}{3}\riff \\x^2-xy=\dfrac{3(\sqrt{2}+1)}{2} \]令\[ AC^2=x^2+y^2=R^2 \riff y=\sqrt{R^2-x^2}\]代入上式有\[ AC^2=R^2=2x^2+\dfrac{9(\sqrt{2}+1)^2}{4x^2}-3(\sqrt{2}+1)\geqslant 3(\sqrt{2}+1) \times \sqrt{2}-3(\sqrt{2}+1)=3\]当$ x^2=\dfrac{3(\sqrt{2}+1)}{2\sqrt{2}} $时取得

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2019-4-21 11:15
回复 2# 乌贼


    谢谢,不过垂足是否落在边AB上?

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-4-29 15:57
套路题。正常做。$ 4\frac{sinB}{cosB} +3\frac{sinA}{cosA}=\frac{sinAsinB}{cosAcosB}$,去分母得,$ 4sinBcosA+3sinAcosB=sinAsinB $,$ 3sinC=sinB(sinA-cosA) $,正弦定理得,$ 3c=b(sinA-cosA) $,代入:$ s=\frac{1}{2}bcsinA=\sqrt{2}+1 $,$ b^2=\frac{6\sqrt{2}+6}{(sinA)^2-sinAcosA} $,$ b^2\leqslant 12 $。等号。。。。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-4-29 15:57
几何法确实开眼界。高手小小失误,第一行是1/2。

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit