Forgot password?
 Register account
View 1573|Reply 9

[组合] 异面垂直多少对

[Copy link]

1

Threads

3

Posts

22

Credits

Credits
22

Show all posts

qingfengmingyue Posted 2019-4-23 14:08 |Read mode
异面垂直有多少对
1.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-4-23 15:26
纯文字题目请转录为文本,尽量不贴图:一、便于日后搜索;二、节省空间。

笨方法:分类讨论。
1、第一条线取棱,则第二条线有 `6` 种选择:比如一取 `AA_1`,则二在 `\triangle BCD` 和 `\triangle B_1C_1D_1` 上取;
2、第一条线取面对角线,则第二条线有 `5` 种选择:比如一取 `AC`,则二在 `BB_1D_1D` 上取(注意要排除 `BD`);
3、第一条线取体对角线,则第二条线有 `6` 种选择:比如一取 `AC_1`,则二在 `\triangle BDA_1` 和 `\triangle B_1D_1C` 上取。
最后,由于都重复计算了一次,所以要除以 `2`,所以答案为 `(12\times6+12\times5+4\times6)\div2=78`。

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

wwdwwd117 Posted 2019-4-23 16:03
回复 2# kuing

我也是算的78,但是分类不一样24+24+24+6=78

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2019-4-23 16:05
回复 3# wwdwwd117

过程写一下啊

1

Threads

3

Posts

22

Credits

Credits
22

Show all posts

 Author| qingfengmingyue Posted 2019-4-23 17:47
回复 2# kuing

开始数得是70对 棱与棱异面垂直的少数了8对

1

Threads

3

Posts

22

Credits

Credits
22

Show all posts

 Author| qingfengmingyue Posted 2019-4-23 17:56
回复 4# 色k

棱与棱24对  面对角线与面对角线6对  面对角线与棱24对 体对角线与面对角线24对

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-4-23 22:45
用程序验证不知有何简单方法?
我用MMC(A)验证如下:
  1. lst0 = Tuples[{0, 1}, 3];
  2. lst1 = Subsets[lst0, {4}];
  3. lst2 = Table[{(lst1[[i, 1]] - lst1[[i, 2]]).(lst1[[i, 3]] - lst1[[i, 4]]),
  4. (lst1[[i, 1]] - lst1[[i, 3]]).(lst1[[i, 2]] - lst1[[i, 4]]),
  5. (lst1[[i, 1]] - lst1[[i, 4]]).(lst1[[i, 2]] - lst1[[i, 3]]),
  6. Det[{lst1[[i, 2]] - lst1[[i, 1]], lst1[[i, 3]] - lst1[[i, 1]],
  7. lst1[[i, 4]] - lst1[[i, 1]]}]}, {i, 1, Length[lst1]}];
  8. DeleteCases[lst2, {___, ___, ___, 0}];
  9. Flatten[%];
  10. Select[%, # == 0 &] // Length
Copy the Code
lst0 是八顶点坐标,lst1 是任取四点,lst2 计算 lst1 每组点的两两连线的数量积,以及一个用于判断是否四点共面的行列式,然后将共面的删掉,最后统计有多少个 0。
输出结果 78

1

Threads

3

Posts

22

Credits

Credits
22

Show all posts

 Author| qingfengmingyue Posted 2019-4-23 23:50
回复 7# kuing

相交垂直应该是54对吧

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-4-24 10:07
回复 8# qingfengmingyue

是的,其中四点共面垂直相交的 6 个,直角三角形 48 个。

后者可用类似于 7# 的程序验证:
  1. lst0 = Tuples[{0, 1}, 3];
  2. lst1 = Subsets[lst0, {3}];
  3. lst2 = Table[{(lst1[[i, 1]] - lst1[[i, 2]]).(lst1[[i, 1]] - lst1[[i, 3]]),
  4. (lst1[[i, 2]] - lst1[[i, 3]]).(lst1[[i, 2]] - lst1[[i, 1]]),
  5. (lst1[[i, 3]] - lst1[[i, 1]]).(lst1[[i, 3]] - lst1[[i, 2]])}, {i, 1, Length[lst1]}];
  6. Flatten[lst2];
  7. Select[%, # == 0 &] // Length
Copy the Code

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-4-24 10:39
要得到78答案,不易啊。

Mobile version|Discuz Math Forum

2025-5-31 11:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit