Forgot password?
 Register account
View 1937|Reply 6

[几何] 三角形外心,内心,垂心,重心的向量表示

[Copy link]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2019-4-24 20:58 |Read mode
三角形ABC,已知向量$\vec{AB},\vec{AC}$,设三角形重心为G,外心为O,内心为I,垂心为H,如何用$\vec{AB},\vec{AC}$表示$\vec{AO},\vec{AI},\vec{AH}$.
另外借此楼收集与三角形四心有关的向量等式.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-4-24 21:10
\(\newcommand\ovs[2][\triangle]{\overline{S_{#1#2}}}\)
利用 $\ovs{PBC}\cdot\vv{PA}+\ovs{PCA}\cdot\vv{PB}+\ovs{PAB}\cdot\vv{PC}=\bm0$ 来推就可以了呗……

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2019-4-24 21:47
回复 2# kuing

只用$\vec{AB},\vec{AC}$表示呀,ku版能不能示范一个,给点提示。

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-4-24 22:10
Last edited by 青青子衿 2019-4-27 23:09回复 3# 郝酒
参见此贴第6楼
forum.php?mod=redirect&goto=findpost& … d=4181&pid=23568
也可以参见此贴第8楼
forum.php?mod=redirect&goto=findpost& … d=5433&pid=27165
\begin{align*}   
\overrightarrow{AG}&=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\\
\\
\overrightarrow{AO}&=\dfrac{b\cos(B)\,}{a\cos(A)+b\cos(B)+c\cos(C)}\overrightarrow{AB}+\dfrac{c\cos(C)\,}{a\cos(A)+b\cos(B)+c\cos(C)}\overrightarrow{AC}\\
\\
\overrightarrow{AI}&=\dfrac{b}{a+b+c}\overrightarrow{AB}+\dfrac{c}{a+b+c}\overrightarrow{AC}\\
\overrightarrow{AH}&=\begin{split}
\,\\\,\\
\dfrac{b\cos(C)\cos(A)}{a\cos(B)\cos(C)+b\cos(C)\cos(A)+c\cos(A)\cos(B)}\overrightarrow{AB}\\
+\dfrac{c\cos(B)\cos(A)}{a\cos(B)\cos(C)+b\cos(C)\cos(A)+c\cos(A)\cos(B)}\overrightarrow{AC}
\end{split}\\
\,\\
\overrightarrow{AI_A}&=\dfrac{b}{-a+b+c}\overrightarrow{AB}+\dfrac{c}{-a+b+c}\overrightarrow{AC}\\   
\end{align*}

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2019-4-25 07:59
谢谢 青青子衿
理解ku版的意思啦:)

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-6-26 11:15
回复 5# 郝酒
还可以这么看(首先要知道:任意一点到各类三角形心的向量表达式)
\begin{align*}   
\overrightarrow{AG}
&=\lim_{\big|\overrightarrow{PA}\big|\to 0}\overrightarrow{PG}\\
&=\lim_{\big|\overrightarrow{PA}\big|\to 0}
\left(\dfrac{1}{3}\overrightarrow{PA}+\dfrac{1}{3}\overrightarrow{PB}+\dfrac{1}{3}\overrightarrow{PC}\right)\\
&=\dfrac{1}{3}\lim_{\big|\overrightarrow{PA}\big|\to 0}\overrightarrow{PA}+\dfrac{1}{3}\lim_{\big|\overrightarrow{PA}\big|\to 0}\left(\overrightarrow{PA}+\overrightarrow{AB}\right)+\dfrac{1}{3}\lim_{\big|\overrightarrow{PA}\big|\to 0}\left(\overrightarrow{PA}+\overrightarrow{AC}\right)\\
&=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\\
\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-6-26 18:26
回复 6# 青青子衿

这样的极限之法,还是第一次见,有点意思。
感觉能通用一般。

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit