Forgot password?
 Register account
View 1609|Reply 4

[几何] 椭圆与双曲线间的距离问题

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2019-4-25 14:56 |Read mode
点$P$是椭圆$\frac{x^2}{4}+y^2=1$上点,点$Q$是双曲线$xy=4$上的点,求证:$|PQ|>\dfrac{6}{5}.$
另外:$\dfrac{6}{5}$是不是最佳?,如何求得$|PQ|$的最小值?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-4-25 15:10
最小值涉高次方程,没得玩。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-4-25 16:03
回复 2# kuing
那么:如何证明问题呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-4-25 23:36
回复 3# lemondian

你是说证明 >6/5?那很容易啊,找两条差不多接近最值的平行切线分隔一下就行了
6/5 很松,目测找斜率是 -1 的都没问题

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-4-26 08:40
回复 4# kuing
好的,我试试,谢谢。

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit