Forgot password
 Register account
View 2061|Reply 11

[不等式] 求证一个三角不等式

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2019-4-28 10:52 |Read mode
在$\triangle ABC$中,求证:$sinA+cosBcosC\leqslant \dfrac{\sqrt{5}+1}{2}$.

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2019-4-28 11:35
太简单了吧,积化和差、放缩、合一

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2019-4-28 11:40
回复 2# 色k
我就做不出来呀

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2019-4-28 11:50
回复 3# lemondian

按我说的步骤试试啊

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2019-4-28 14:52
回复 4# 色k
按你的试了,还是不会。。。

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2019-4-29 00:03
$ LHS=sin(B+C)+cosBcosC=(sinB+cosB)cosC+cosBsinC\leqslant \sqrt{[(sinB+cosB)^2+(cosB)^2][(cosC)^2+(sinC)^2)]} $,下面就简单了。

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2019-4-29 00:30
回复 6# 敬畏数学

这好象不是色k的做法?

1

Threads

55

Posts

0

Reputation

Show all posts

huing posted 2019-4-29 11:19
视A为固定值时,左边的最大值显然在B=C时取得。左边变成一元式\[
\sin2B+\cos^2B\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-4-29 12:31
回复  色k
按你的试了,还是不会。。。
lemondian 发表于 2019-4-28 14:52
唉……这都要写过程……[无奈]
\[LHS=\sin A+\frac{\cos(B+C)+\cos(B-C)}2\leqslant\sin A+\frac{-\cos A+1}2=\sqrt{1+\frac14}\sin(A+\phi)+\frac12\leqslant RHS.\]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2019-4-29 13:27
回复 9# kuing
这个题还是很容易想到的。$tanA=-2,tanB=tanC$取等

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2019-4-29 15:45
积化和差在教材里已经修改为例题和练习,不再是公式.

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2019-4-29 16:04
均值换元用下,
$B=0.5\pi-0.5A+t,C=0.5\pi-0.5A-t,0.5A-0.5\pi<t<0.5\pi-0.5A$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:14 GMT+8

Powered by Discuz!

Processed in 0.012620 seconds, 22 queries