|
Last edited by 青青子衿 at 2019-4-30 10:45:00在二维的情形中,可以求出曲线\(\,e^{x+y}=\,e^{x}+e^{y}\,\)与\(\,x\,\)轴、\(\,y\,\)轴所围成区域的面积。
\begin{align*}
&&e^{x+y}&=e^x+e^y\\
\Rightarrow&&y&=x-\ln\left(e^x-1\right)
\end{align*}
\begin{align*}
\int_0^{+\infty}\bigg(x-\ln\left(e^x-1\right)\bigg)
\mathrm{d}x=\dfrac{\pi^2}{6}
\end{align*}
那么,
在三维的情形中,如何求出曲面\(\,e^{x+y}+e^{y+z}+e^{z+x}=\,2(e^{x}+e^{y}+e^{z})\,\)与\(\,xOy\,\)平面、\(\,yOz\,\)平面、\(\,xOz\,\)平面所围成区域的体积。- NIntegrate[
- Boole[E^x + E^y + 2 >= E^(x + y)]
- Log[(2 E^x + 2 E^y - E^(x + y))/(E^x + E^y - 2)],
- {x, 0, \[Infinity]}, {y, 0, \[Infinity]}]
Copy the Code |
|