Forgot password?
 Register account
View 1886|Reply 1

[几何] 圆锥内躺着一个圆锥

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-4-29 11:16 |Read mode
Last edited by 青青子衿 2019-4-29 13:34一个空心(只有面的部分)的(旋转轴竖直)正圆锥体\(\,P-\odot\,\!O_1\,\),其顶点为\(\,P\,\);
其某一条母线\(\,l_1\,\)与旋转轴\(\,L_1\,\)的夹角为\(\,\theta_1\,\),其高(长度)为\(\,H\,\);

在这个圆锥体\(\,P-\odot\,\!O_1\,\)内部有个圆锥体\(\,Q-\odot\,\!O_2\,\);
其顶点为\(\,Q\,\),其旋转轴为\(\,L_2\,\),其与母线的夹角为\(\,\theta_2\,\),其高(长度)为\(\,h\,\)
(小)圆锥体\(\,Q-\odot\,\!O_2\,\)与(大)圆锥体\(\,P-\odot\,\!O_1\,\)底面切于一条母线\(\,l_2\,\);
问:何时这样“躺着的”圆锥体\(\,Q-\odot\,\!O_2\,\)的体积最大?

PS:该问题是由这个帖子联想到的:[几何] 圆锥内棱长最大的四面体

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-4-29 12:26
感觉相当于变成双曲线与圆相切啥的,不过具体计算估计很麻烦,不想进坑

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit