|
青青子衿
Posted 2019-5-11 14:03
Last edited by 青青子衿 2019-5-11 14:15回复 10# 青青子衿
Oeis上有一个数列(A265914)记录着
Number of Hamiltonian paths on an n X n grid reduced for symmetry,
i.e., where rotations and reflections are not counted as distinct.
在对称变换下,\(\,n\times\,\!n\,\)网格中哈密顿路径的数目。
\begin{align*}
a_1&=1 &&a_2=1 \\
a_3&=3 &&a_4=38\\
a_5&=549 &&a_6=28728\\
a_7&=1692417 &&a_8=377919174\\
a_9&=93177169027 &&a_{10}=91255604983167\\
a_{11}&=98333935794279062&&a_{12}=431583106977641773651
\end{align*}
在对称变换下,\(\,3\times3\,\)网格中哈密顿路径(一笔可画完路径)的数目只有三种(可以记作G型、LS型、S型)。
\begin{align*}
\begin{array}{|c|c|c|c|}
\hline
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\
\hline
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\downarrow\\\downarrow}}\!\!\!{\substack{\phantom\rightarrow}}&
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}\\
\hline
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\downarrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}\\
\hline
\end{array}
\end{align*}
\begin{align*}
\begin{array}{|c|c|c|c|}
\hline
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\uparrow}}\!\!\!{\substack{\phantom\leftarrow}}&
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\
\hline
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\uparrow\\\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}&
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\uparrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\
\hline
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}\\
\hline
\end{array}
\end{align*}
\begin{align*}
\begin{array}{|c|c|c|c|}
\hline
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\
\hline
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\downarrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\phantom\downarrow\\\phantom\uparrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\
\hline
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\downarrow\\\phantom\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}\\
\hline
\end{array}
\end{align*} |
|