Forgot password?
 Register account
View 1527|Reply 11

12*12方阵填数问题

[Copy link]

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

wwdwwd117 Posted 2019-5-7 10:31 |Read mode
将1-144这144个自然数填入12*12的方阵,要求相邻的自然数在相邻的方格中。(上下左右为相邻)且144与1相邻。
求主对角线之和的最大值。

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

 Author| wwdwwd117 Posted 2019-5-9 12:10
88(9JO0%CJ%]QT}I597%RCO.png
6$EGIA{V7YD{4%YHX@Q}J$C.png
I6
P}~

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

 Author| wwdwwd117 Posted 2019-5-9 12:12
想了两天。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-9 12:23
“主对角线之和”我还以为两条对角线都要考虑

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

 Author| wwdwwd117 Posted 2019-5-9 12:47

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2019-5-9 13:18
回复 4# kuing


    应该加上“一条”,我也想成2条了

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2019-5-9 13:27
回复 4# kuing
矩阵里面的“主对角线”指的就是转置轴,即左上到右下的那条对角线,“副对角线”则是指右上到左下那条对角线。因此题目表述得很清楚。

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1 对哦,抱拳

View Rating Log

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-9 13:38
回复 7# Infinity

好吧,没怎么学过矩阵的就是吃亏[笑哭][捂脸]

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2019-5-9 17:14
回复 8# kuing
也就是那些学术同行一个约定俗成的叫法,比如还有次对角线(主对角线往下移一行),超对角线(主对角线上移一行)。可以熟悉一下,方便交流。

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-5-11 12:11
回复 9# Infinity
其实,应该称“主对角线元素之和”更合理一些

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-5-11 14:03
Last edited by 青青子衿 2019-5-11 14:15回复 10# 青青子衿
Oeis上有一个数列(A265914)记录着
Number of Hamiltonian paths on an n X n grid reduced for symmetry,
i.e., where rotations and reflections are not counted as distinct.
在对称变换下,\(\,n\times\,\!n\,\)网格中哈密顿路径的数目。
\begin{align*}
a_1&=1  &&a_2=1  \\
a_3&=3  &&a_4=38\\
a_5&=549  &&a_6=28728\\
a_7&=1692417  &&a_8=377919174\\
a_9&=93177169027  &&a_{10}=91255604983167\\
a_{11}&=98333935794279062&&a_{12}=431583106977641773651
\end{align*}
在对称变换下,\(\,3\times3\,\)网格中哈密顿路径(一笔可画完路径)的数目只有三种(可以记作G型、LS型、S型)。
\begin{align*}
\begin{array}{|c|c|c|c|}   
\hline   
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\   
\hline   
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\downarrow\\\downarrow}}\!\!\!{\substack{\phantom\rightarrow}}&
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}\\   
\hline   
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\downarrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}\\
\hline   
\end{array}
\end{align*}
\begin{align*}
\begin{array}{|c|c|c|c|}   
\hline   
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\uparrow}}\!\!\!{\substack{\phantom\leftarrow}}&
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\   
\hline   
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\uparrow\\\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}&
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\uparrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\   
\hline   
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}\\
\hline   
\end{array}
\end{align*}
\begin{align*}
\begin{array}{|c|c|c|c|}   
\hline   
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\   
\hline   
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\downarrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\phantom\downarrow\\\phantom\uparrow}}\!\!\!{\substack{\rightarrow}}&
{\substack{\rightarrow}}\!\!\!{\substack{\phantom\uparrow\\\downarrow}}\!\!\!{\substack{\phantom\leftarrow}}\\   
\hline   
{\substack{\phantom\leftarrow}}\!\!\!{\substack{\phantom\downarrow\\\phantom\downarrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\phantom\uparrow\\\phantom\uparrow}}\!\!\!{\substack{\leftarrow}}&
{\substack{\leftarrow}}\!\!\!{\substack{\downarrow\\\phantom\uparrow}}\!\!\!{\substack{\phantom\rightarrow}}\\
\hline   
\end{array}
\end{align*}

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2019-5-11 16:41
回复 10# 青青子衿
是的,这样表述更清楚。

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit