Forgot password?
 Register account
View 1678|Reply 2

[不等式] 无聊不等式

[Copy link]

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

Shiki Posted 2019-5-10 17:40 |Read mode
Last edited by Shiki 2019-5-10 17:48$a_i(i=1,2,\cdots n)$为正数
求证:
$\sqrt{a_1+a_2+\cdots+a_n}+\sqrt{a_2+a_3+\cdots+a_n}
+\cdots+\sqrt{a_n}\geqslant \sqrt{a_1+4a_2+9a_3+\cdots +n^2a_n}$
答案归纳时用了柯西,貌似$n\geqslant 2$就没法取等了
我的想法是$\sqrt{a}+\sqrt{b}\geqslant\sqrt{a+b}$ 请问可以吗?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-10 17:52
直接 `\sqrt{a}+\sqrt{b}\geqslant\sqrt{a+b}` 后面 `a_n` 的系数不够大吧……

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

 Author| Shiki Posted 2019-5-10 17:55
Last edited by Shiki 2019-5-10 18:16回复 2# kuing


    是我想错了..颅内证明不靠谱...

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit