Forgot password?
 Create new account
View 1819|Reply 5

[函数] 函数与导数,衡水中学2019年高三下学期一调16题

[Copy link]

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

guanmo1 Posted at 2019-5-11 23:44:28 |Read mode
无标题.png

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2019-5-12 02:11:50
回复 1# guanmo1


哼,小破衡中以为弄个解不出来的函数大家就没办法玩分离参数了,非要动用各种奇技淫巧?对不起,劳资有的是重武器,大可以正面强攻

首先介绍朗博的$W$函数,其实也很简单,就是$f(w)=we^w$的反函数,$W(x)=f^{-1}(x)$

那么显然$W(x)$是增函数,而且$x>0$时$W(x)>0$,另外
\[W'(x)=\frac{1}{f'(w)}=\frac{1}{e^w(1+w)}=\frac{1}{x+\frac{x}{W(x)}}\]
这里显然分离参数会变成
\[\lambda xe^{\lambda x}\ge x\ln(x)\]
\[\lambda x\ge W(x\ln(x))\]
\[\lambda\ge\frac{1}{x} W(x\ln(x))\]
于是变成求$\frac{1}{x} W(x\ln(x))$在$x\in (e^2,+\infty)$上的最大值,对此求导可知
\[\frac{d}{dx}[\frac{1}{x} W(x\ln(x))]=-\frac{W(x\ln(x))}{x^2}+\frac{(1+\ln(x))W'(x\ln(x))}{x}\]
\[=\frac{1}{x^2}[(1+\ln(x))\frac{1}{x\ln(x)+\frac{x\ln(x)}{W(x\ln(x))}}-xW(x\ln(x))]\]
\[=-\frac{W(x\ln(x))}{x^2\ln(x)(1+W(x\ln(x)))}[\ln(x)W(x\ln(x))-1]\]
那么显然决定导数符号的会是$\ln(x)W(x\ln(x))-1$这一块,而又显然$\ln(x)W(x\ln(x))$是增函数,有$\ln(x)W(x\ln(x))\ge \ln(e^2)W(e^2\ln(e^2))=4>1$,上面整体为负,最大值就在$x=e^2$取到,因此
\[\lambda\ge \frac{1}{e^2}W(e^2\ln(e^2))=\frac{2}{e^2}\]

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1 总觉得2楼3楼有关联

View Rating Log

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2019-5-12 06:46:30
$ \lambda xe^{\lambda x}\geqslant xlnx=e^{lnx}lnx $,$ h(x)=xe^x(x>0) $为增函数,则:$ \lambda x\geqslant lnx $,$ \lambda \geqslant \frac{lnx}{x} $,显然$ \lambda \geqslant \frac{2}{e^2} $。套路。。。。

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1 这个好懂

View Rating Log

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2019-5-12 07:13:00
回复  guanmo1


哼,小破衡中以为弄个解不出来的函数大家就没办法玩分离参数了,非要动用各种奇技淫巧? ...
战巡 发表于 2019-5-12 02:11
朗博的$W$函数,学习了,这么一来,好多超越函数便可解啊,厉害厉害

10

Threads

4

Posts

72

Credits

Credits
72

Show all posts

2009 Posted at 2019-5-12 15:51:23
令f(x)=lnλ+λx-lnlnx,需满足f(e^2)=lnλ+λe^2-ln2≥0,因为λ=2e^(-2)时取等且关于λ单调递增,所以λ≥2e^(-2),这是必要性,再验证充分性:当λ≥2e^(-2)时,f'(x)=λ-1/xlnx≥2e^(-2)-1/2e^2>0,所以f(x)>f(e^2)≥0。综上λ≥2e^(-2)。

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

 Author| guanmo1 Posted at 2019-5-12 20:54:03
回复 3# 敬畏数学

漂亮!

手机版Mobile version|Leisure Math Forum

2025-4-21 14:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list