Forgot password?
 Register account
View 1635|Reply 2

[数列] 互嵌数列问题

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2019-5-17 05:04 |Read mode
若存在无穷数列{$a_n$},{$b_n$}满足:对于任意的N∈$N_+$,
$a_{n+1}$,$b_{n+1}$是方程$x^{2}-\frac{1}{2}(a_n+b_n)x+\sqrt{a_nb_n}$=0的两根,且$a_{10}=1,b_1>0,则b_1=$

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2019-5-17 15:31
回复 1# facebooker

这里必须加一个条件:两个数列都是实数数列
首先显然
\[a_{n+1}+b_{n+1}=\frac{1}{2}(a_n+b_n)\]
\[a_{n+1}b_{n+1}=(a_nb_n)^\frac{1}{2}\]
那么
\[a_n+b_n=\frac{1}{2^{n-1}}(a_1+b_1)\]
\[a_nb_n=(a_1b_1)^{\frac{1}{2^{n-1}}}\]

这玩意既然要是实数,得有对任意$n>0$
\[(a_n+b_n)^2\ge 4a_nb_n\]
\[\frac{1}{4^n}(a_1+b_1)^2\ge (a_1b_1)^{\frac{1}{2^{n-1}}}\]
这里$a_1,b_1\ge 0$都是常数,很显然$n\to \infty$时左边会趋于$0$,那么右边作为一个非负的东西,也必须趋于$0$,否则没戏唱了,可是右边会随便趋于$0$么?显然不会,当$a_1,b_1>0$时
\[\lim_{n\to\infty}(a_1b_1)^{\frac{1}{2^{n-1}}}=1\]
那只剩一个办法了:$a_1b_1=0$,既然你说了$b_1>0$,那就$a_1=0$好了
既如此,$a_{10}b_{10}=(a_1b_1)^{\frac{1}{2^{9}}}=0,b_{10}=0$,于是
\[a_{10}+b_{10}=1=\frac{1}{2^9}(a_1+b_1)=\frac{1}{2^9}b_1\]
\[b_1=2^9\]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

 Author| facebooker Posted 2019-5-17 19:28
谢谢

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit