Forgot password
 Register account
View 1794|Reply 3

[不等式] 宋老师的n元不等式

[Copy link]

46

Threads

82

Posts

1

Reputation

Show all posts

Shiki posted 2019-5-18 08:51 |Read mode
Last edited by Shiki 2019-5-18 17:10$ a_1+a_2+\cdots+a_n=\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}.$
证明或证否
$a_1a_2+a_2a_3+\cdots+a_{n-1}a_n +a_na_1\ge n .$
= =

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2019-5-18 15:59
幸亏我直觉准,虽然 3、4 元能证出来,但总觉得多元有可能不成立,于是就着手找反例,果然在 5 元就找到了:当
\[\{a,b,c,d,e\}=\left\{\frac18\sqrt{\frac{23}{143}},104\sqrt{\frac{23}{143}},\frac18\sqrt{\frac{23}{143}},\frac12\sqrt{\frac{23}{143}},8\sqrt{\frac{23}{143}}\right\},\]它满足条件,并且此时
\[ab+bc+cd+de+ea=\frac{11431}{2288}<5.\]

??纳尼?回完帖才发现楼主补了句“或证否”……擦擦擦

46

Threads

82

Posts

1

Reputation

Show all posts

original poster Shiki posted 2019-5-18 17:09
回复 2# 色k
k神太强了,依稀记得那帖子sqing老师也只做了三四元就没下文了,原来往上不成立了

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-5-18 17:26
顺便补充一点,为何我会有那种感觉,三元的 `\sum ab` 是完全对称的,四元的 `\sum ab` 它可以分解成 `(a+c)(b+d)`,仍具有很强的对称性,但是五元以上就只剩轮换,没其他了,所以事情往往就没那么好运了,故此通常提出此类猜想至少应该利用软件检验到 5 元再说。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:55 GMT+8

Powered by Discuz!

Processed in 0.012218 seconds, 23 queries