Forgot password?
 Register account
View 1920|Reply 9

[函数] 最大值M(a,b)中的最小值25/8

[Copy link]

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2019-5-19 17:27 |Read mode
$f(x)=\abs{x^2+a}+\abs{x+b},a,b\in R,x\in [-2,2],f(x)_{max}=M(a,b),M(a,b)_{min}=\frac{25}{8}$,则a的值为___.

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-19 19:12
$ a=-\frac{23}{8} $。也一样套路。

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2019-5-19 19:34
回复 2# 敬畏数学

三流普高教书,不知道套路,说下思路

13

Threads

908

Posts

110K

Credits

Credits
12307

Show all posts

色k Posted 2019-5-19 21:42
先由图象猜得结果再凑过程啊,如果想装逼,猜的过程别写出来即可。

猜时:由对称性猜 `b=0`,令 `g(x)=x^2+a`,取等时应 `-g'(x)+1=0` 且 `-g(x)+x=g(2)+2`,解得 `x=1/2`, `a=-23/8`。

然后凑过程:
\begin{align*}
4M(a,b)&\geqslant f(2)+f(-2)+f\left( \frac12 \right)+f\left( -\frac12 \right)\\
&=2\abs{4+a}+2\left| \frac14+a \right|+\abs{2+b}+\abs{2-b}+\left| \frac12+b \right|+\left| \frac12-b \right|\\
&\geqslant2\left| 4-\frac14 \right|+4+1=\frac{25}2,
\end{align*} 得到 `M(a,b)\geqslant25/8`,取等时 `f(2)=f(-2)=f(1/2)=f(-1/2)=25/8`,解得 `b=0`, `a=-23/8`。

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2019-5-20 00:04
老大你这是咋猜出的啊 有点天外飞仙的感觉

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2019-5-20 01:15
个人理解等价于:若$ f(x) =\abs{x^2+a}+\abs{x+b},a,b\in R,x\in [-2,2],若f(x)_{max}=\dfrac{25}{8}$,则a的值为___,b的值为___。
或者说:$ f(x) =\abs{x^2+a}+\abs{x+b},a,b\in R,x\in [-2,2],f(x)_{max}=M(a,b)$,求$M(a,b)$的取值范围。且$M(a,b)$与数对$(a,b)$一一对应。

13

Threads

908

Posts

110K

Credits

Credits
12307

Show all posts

色k Posted 2019-5-20 01:21
回复 5# facebooker

你把那两个绝对值的草图画一画,想想最大值会在哪些地方取到,就知道我上面说的意思啦

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2019-5-20 01:30
回复 7# 色k
要是画不出图的函数呢?

13

Threads

908

Posts

110K

Credits

Credits
12307

Show all posts

色k Posted 2019-5-20 01:36
回复 8# 乌贼

遇到再说反正这种一看就是套路题,想想图形就成了

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-5-21 15:42
Last edited by hbghlyj 2025-3-19 18:11\begin{aligned}
& f(x)=\max \left\{\left|x^2+x+a+b\right|,\left|x^2-x+a-b\right|\right\},-2 \leq x \leq 2 . \\
& \Rightarrow f_{\max }(x)=\max \left\{\left|x^2+x+a+b\right|_{\max },\left|x^2-x+a-b\right|_{\max }\right\} \\
& =\max \left\{f(-2), f\left(-\frac{1}{2}\right), f(2), f\left(\frac{1}{2}\right)\right\} .
\end{aligned}

Mobile version|Discuz Math Forum

2025-6-1 18:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit