Forgot password?
 Register account
View 1948|Reply 8

[几何] 求一向量表达式最小值

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2019-5-20 20:25 |Read mode
\[ \abs{\vv{a}}=\abs{\vv{b}}=\abs{\vv{c}}= 1,\vv{a}\cdot \vv{b}=0  \]
求$\abs{0.5\vv{c}-\vv{a}}+\abs{2\vv{c}-\vv{b}}  $的最小值.

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2019-5-20 22:26
7彩阳光联盟的题目
就是根据对称性|0.5c-a|=|c-0.5a| 这样转化一下

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2019-5-20 22:27
\[
\abs{0.5\bm c-\bm a}+\abs{2\bm c-\bm b}
=\abs{\bm c-0.5\bm a}+\abs{\bm c-2\bm b}
\geqslant\abs{0.5\bm a-2\bm b}=\frac{\sqrt{17}}2,
\]取等略。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2019-5-20 22:27
码代码慢了一分钟

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-21 09:00
Last edited by 敬畏数学 2019-5-21 13:36不妨设$\vv{c}=(1,0),\vv{a}=(cos\theta ,sin\theta ),\vv{b}=(-sin\theta ,cos\theta ),\theta ∈[0,2π]$,则$ |\frac{1}{2}\vv{c}-\vv{a}|+ |2\vv{c}-\vv{b}|=\sqrt{(cos\theta -\frac{1}{2})^2+(sin\theta -0)^2} +\sqrt{(cos\theta -0)^2+(sin\theta -(-2))^2}$,表示单位圆上的点到$ (\frac{1}{2},0),(0,-2) $距离之和的最小值,显然$ \sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2} $,等号取得满足:$ cos\theta =\frac{1}{\sqrt{17}},sin\theta =-\frac{4}{\sqrt{17}} $。

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2019-5-21 11:10
回复 5# 敬畏数学

题目没说它们是平面向量。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2019-5-22 02:21
回复 5# 敬畏数学
回复 6# 爪机专用
211.png
那就把它变空间向量,球$ O $半径为1,$ A,B $为球面上两点且$ AO\perp BO $,$ CO=2 $,点$ E $在$ CO $上且$ OE=\dfrac{1}{2} $,作$ DO=CO,DO\perp CO,\angle AOD=\angle COB $,$ F $为$ DE $与球面交点。有\[ \triangle AOD\cong \triangle COB\riff AD=CB \]所以$ CB+AE=AD+CE\geqslant DE=\dfrac{\sqrt{17}}{2} $(取等条件点$ A,F $重合时)

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-22 15:45
大师!学习。。。。。。辛苦啦。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-3-1 21:52
回复 5# 敬畏数学

如果这是平面向量,设的坐标很巧妙,否则不能转换成线段和。

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit