Forgot password
 Register account
View 1832|Reply 5

[不等式] 一个放缩问题

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2019-5-21 21:55 |Read mode
这种放缩在大家手里象棉条一样。下面献题:
已知$a,b,c$非负,且$a+b+c=1$,求证:
$6-4\sqrt{2}\leqslant a^3+2b^2+\frac{8}{3} c\leqslant\frac{8}{3}$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-5-21 23:06
题目确定没抄错?右边显然成立,而左边似乎取不了等……

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2019-5-21 23:38
$ a^3\leqslant \frac{8}{3}a,2b^2\leqslant \frac{8}{3}b,\frac{8}{3}c=\frac{8}{3}c $,显然右边成立,等号取$ a=0,b=0,c=1 $。$ a^3+\frac{16\sqrt{2}}{27}+\frac{16\sqrt{2}}{27}+2b^2+\frac{8}{9}+\frac{8c}{3}-\frac{32\sqrt{2}}{27}- \frac{8}{9}>6-4\sqrt{2}$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-5-21 23:53
回复 3# 敬畏数学

你可以试试证明原式 >=14/27

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2019-5-22 08:31
$ a^3\geqslant \frac{4}{3}a-\frac{16}{27},a∈[0,1] $,$2b^2\geqslant \frac{4}{3}b-\frac{2}{9},b∈R,a^3+2b^2+\frac{8}{3}c\geqslant \frac{4}{3}(a+b+2c)-\frac{22}{27}\geqslant \frac{14}{27}$,等号成立:$ a=\frac{2}{3} ,b=\frac{1}{3},c=0$

281

Threads

550

Posts

2

Reputation

Show all posts

original poster 力工 posted 2019-5-22 13:37
回复 2# kuing
原题是这样了,可能就是为了让人学学放缩。k神一眼就瞧出来可以改进!大写的服!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:17 GMT+8

Powered by Discuz!

Processed in 0.013186 seconds, 22 queries