Forgot password
 Register account
View 1577|Reply 4

[函数] 二元函数的最值

[Copy link]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2019-5-22 22:52 |Read mode
$ x,y ∈[0,+\infty )$,则$x^3+y^3-5xy$的最小值_____。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-5-22 22:56
??均值后变成一元函数求导就行啊,太简单了吧……

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2019-5-22 23:11
回复 2# kuing
牛!一次均值也可以。$ \geqslant 2\sqrt{(xy)^3}-5xy $,然后设$ \sqrt{xy}=t $,$g(t)=2t^3-5t^2,t\geqslant 0,$易得,最小值为$ -\frac{125}{27} $,等号取得简单。

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2019-5-22 23:27
干脆一次消掉$ xy$成定值,$  x^3+y^3+\lambda -5xy-\lambda \geqslant 3\sqrt[3]{\lambda }xy-5xy-\lambda ,(\lambda >0)$,由 $3\sqrt[3]{\lambda }-5=0$,得,$ \lambda =\frac{125}{27} $,最小值为$ -\frac{125}{27} $,等号取得:$ x^3=y^3=\lambda = \frac{125}{27}$。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-5-22 23:46
回复 4# 敬畏数学

嗯,这样好点。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:59 GMT+8

Powered by Discuz!

Processed in 0.013776 seconds, 22 queries