Forgot password?
 Register account
View 1825|Reply 2

[几何] 筝形

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-5-23 00:02 |Read mode
已知四边形ABCD是筝形,AC⊥BD,AB≠BC,直线AB,CD交于F,AC,DB交于G,求证:$\frac{四边形ABCD的周长}{△BCF的周长}+\frac{AG}{GC}=1$
QQ浏览器截图20180909213316.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-24 23:25
捕获.PNG
如图,作 `A` 关于 `BD` 的对称点 `A'`,则 $A'D\px AF$,从而
\[\frac{CF+FA}{CD+DA}=\frac{CF+FA}{CD+DA'}=\frac{CA}{CA'}=\frac{CG+GA}{CG-GA},\]所以
\begin{align*}
\frac{\text{四边形}~ABCD~\text{的周长}}{\triangle BCF~\text{的周长}}
&=\frac{CD+DA+AB+BC}{CF+FA+AB+BC}\\
&=\frac{2(CD+DA)}{CF+FA+(CD+DA)}\\
&=\frac2{\frac{CG+GA}{CG-GA}+1}\\
&=1-\frac{AG}{GC}.
\end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-25 00:01
再来一种不用作辅助线的面积证法:

因为筝形必有内切圆,注意该圆同时也是 `\triangle BCF` 的内切圆,于是
\begin{align*}
\frac{\text{四边形}~ABCD~\text{的周长}}{\triangle BCF~\text{的周长}}
&=\frac{\text{四边形}~ABCD~\text{的面积}}{\triangle BCF~\text{的面积}}\\
&=1-\frac{\S{ADF}}{\S{BCF}}\\
&=1-\frac{\frac{AF}{AB}\S{ADB}}{\frac{CF}{CD}\S{BCD}},
\end{align*}而 `CA` 为 `\triangle BCF` 的角平分线,故由角平分定理得
\[\frac{AF}{AB}=\frac{CF}{CB}=\frac{CF}{CD},\]另外 $\S{ADB}:\S{BCD}=AG:GC$,所以
\[\frac{\text{四边形}~ABCD~\text{的周长}}{\triangle BCF~\text{的周长}}=1-\frac{AG}{GC}.\]

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit