Forgot password?
 Register account
View 1637|Reply 6

[不等式] 两道不等式题

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10991

Show all posts

lemondian Posted 2019-5-23 11:11 |Read mode
(1)$f(x)=(\sqrt{1+x}+\sqrt{1-x}-3)(\sqrt{1-x^2}+1)$的最小值为$N$,最大值为$M$,求$\frac{M}{N}$。
(2)设$a,b,c\in(0,1]$,$\lambda $为实数,使得$\dfrac{\sqrt{3}}{\sqrt{a+b+c}}\geqslant 1+\lambda(1-a)(1-b)(1-c) $恒成立,求$\lambda $的最大值。

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2019-5-23 11:23
(1) 也太简单了吧,注意 `\sqrt {1+x}+\sqrt {1-x}=\sqrt {2+2\sqrt {1-x^2}}`,换元后变成 `f(x)=(t-3)t^2/2`……

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

Shiki Posted 2019-5-23 12:09

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2019-5-23 12:20
回复 3# Shiki

我刚打好草稿,幸亏在码代码之前先刷新了一下,不然就白码了
QQ截图20190523121945.png

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

Shiki Posted 2019-5-23 12:37
回复 4# kuing


   

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-23 12:59
回复 4# kuing
$ x(1-x)^2(1+x)^3=3x(3-3x)(3-3x)(1+x)(1+x)(1+x)\frac{1}{27}\leqslant $。。。

413

Threads

905

Posts

110K

Credits

Credits
10991

Show all posts

 Author| lemondian Posted 2019-5-23 14:26
回复 4# kuing
不白码呀,把你做的放出来学习嘛。

Mobile version|Discuz Math Forum

2025-6-1 19:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit