Forgot password?
 Register account
View 1559|Reply 5

[不等式] 貌似和那个级数有关

[Copy link]

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

Shiki Posted 2019-5-25 21:09 |Read mode
$\frac {n(2n-1)}{3}\leq \frac{(2n+1)^2}{\pi ^2 }\displaystyle\sum_{k=1}^n\frac{1}{k^2} \leq n+\frac {n(2n-1)}{3}$
n为正整数

在打$\displaystyle\sum_{k=1}^n\frac{1}{k^2}$的时候忘了怎么标准大小显示,去看了下置顶,打出来才发现置顶里的示例就是我要打的东西..
手机键盘找不到小于号,两个都是严格小于
= =

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-5-25 22:20
回复 1# Shiki

女子选拔赛题?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-26 00:32
先说代码:用行间公式(双美元或 \ [ ... \ ])就是标准显示,而即使是行内公式加 \displaystyle 的话也应该加在最前面,这样就不会左边小右边大了。

再说题:用那个级数的结论很容易证明此题,但我估计命题者并不是这用意,或许Ta正是想通过此题向我们介绍那个级数的一种推导?……坐等标答……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-26 00:39
还是写一写利用那个级数结论来证明此题的过程吧:由
\[\sum_{k=1}^\infty\frac1{k^2}=\frac{\pi^2}6,\]得
\[\frac6{\pi^2}\sum_{k=1}^n{\frac1{k^2}}=\sum_{k=1}^n\frac1{k^2}\biggm/\left( \sum_{k=1}^n\frac1{k^2}+\sum_{k=n+1}^\infty\frac1{k^2} \right)=\frac1{1+p(n)},\]其中
\[p(n)=\sum_{k=n+1}^\infty\frac1{k^2}\biggm/\sum_{k=1}^n\frac1{k^2},\]则
\begin{align*}
p(n)&<\sum_{k=n+1}^\infty\frac1{k^2-1/4}\biggm/\sum_{k=1}^n\frac1{k(k+1)}=\frac{2(n+1)}{n(2n+1)},\\
p(n)&>\sum_{k=n+1}^\infty\frac1{k(k+1)}\biggm/\sum_{k=1}^n\frac1{k^2-1/4}=\frac{2n+1}{4n(n+1)},
\end{align*}代回去化简即得
\[1-\frac{2(n+1)}{2n^2+3n+2}<\frac6{\pi^2}\sum_{k=1}^n{\frac1{k^2}}<1-\frac{2n+1}{4n^2+6n+1},\]乘以 `(2n+1)^2/6` 再化简可得
\[\frac{2n^2}3-\frac16+\frac{2n+1}{3(2n^2+3n+2)}<\frac{(2n+1)^2}{\pi^2}\sum_{k=1}^n{\frac1{k^2}}<\frac{2n^2}3+\frac n3+\frac16-\frac{4n+1}{6(4n^2+6n+1)},\]显然此结果强于原题。

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

 Author| Shiki Posted 2019-5-26 07:12
回复 2# 力工

是的

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

 Author| Shiki Posted 2019-5-26 07:18
回复 3# kuing

其实我手写公式的时候$\Sigma$往后都不由自主写大了,所以这个代码效果和我手写类似

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit