Forgot password
 Register account
View 2037|Reply 8

[函数] 2019浙江卷第22题关于导数

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2019-6-8 11:52 |Read mode
对任意$x\in [ \frac{1}{e^2},+∞)$均有$a\ln{x}+\sqrt{x+1}\le \frac{\sqrt{x}}{2a},a≠0$成立,
求$a$的取值范围.
记$g(x)=\frac{\sqrt{x}}{2a}-a\ln{x}-\sqrt{x+1}$,由$g(1)\ge 0$,得到$0<a\le \frac{\sqrt{2}}{4}$.
以下证明当$0<a\le \frac{\sqrt{2}}{4},x\ge \frac{1}{e^2}$时,原不等式恒成立.
即要证明$2a^2\ln{x}+2a\sqrt{x+1}-\sqrt{x}\le 0 $
左边看作a的二次函数,因为a>0,只需$a=0,a=\frac{\sqrt{2}}{4}$代入成立即可.a=0显然
$a=\frac{\sqrt{2}}{4}$代入,即要证明$x\in [ \frac{1}{e^2},+∞)$,$\frac{\ln{x}}{4}+\frac{\sqrt{2}\sqrt{x+1}}{2}-\sqrt{x}\le 0$,
令$x=t^2,t\ge \frac{1}{e}$,即要证明$\frac{\ln{t}}{2}+\frac{\sqrt{2}\sqrt{t^2+1}}{2}-t\le 0$,
记$h(t)=t-\frac{\ln{t}}{2}-\frac{\sqrt{2}\sqrt{t^2+1}}{2},t\ge \frac{1}{e}$
$h(1)=0,\frac{1}{t}=s,0<s\le e,h'(t)=1-\frac{1}{2t}-\frac{t}{\sqrt{2}\sqrt{t^2+1}}=1-\frac{s}{2}-\frac{1}{\sqrt{2}\sqrt{1+s^2}},$
可证$h'(1)=0,t>1,h'(t)>0,\frac{1}{e}<t<1,h'(t)<0$
所以有h(t)>0成立.这就证明了原题.

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2019-6-8 12:09
Тмл(21******16)  12:04:11
第五行那个二次函数
Тмл(21******16)  12:05:12
开口也可能向下的,看来是得分类讨论下

---看来1楼出问题了

138

Threads

743

Posts

3

Reputation

Show all posts

走走看看 posted 2019-6-8 12:22
回复 2# realnumber


    关注中,不过要防止被搜索到,高考考卷还没有封存吧?

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2019-6-8 12:40
回复  realnumber


    关注中,不过要防止被搜索到,高考考卷还没有封存吧? ...
走走看看 发表于 2019-6-8 12:22
不太明白,违法?

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2019-6-8 13:12
回复 4# realnumber
据传是这样的。考都考过了。应该是谣言吧

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2019-6-8 17:50
回复 4# realnumber


违法,是违法,现在的时间讨论都是擦边球时间。

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2019-6-9 07:19
Last edited by realnumber 2019-6-9 08:011楼还需证明$0\le a \le \frac{\sqrt{2}}{4},x\in [ \frac{1}{e^2},1]$时,$2a^2\ln{x}+2a\sqrt{x+1}-\sqrt{x}\le 0$
令$x=e^{-2t},0\le t \le1$,
即要证明$2ate^t+\frac{1}{2a}-\sqrt{1+e^{2t}}\ge 0$
记$m(a)=2ate^t+\frac{1}{2a}-\sqrt{1+e^{2t}},0<a \le \frac{\sqrt{2}}{4},0\le t \le1$
(1).当$\frac{\sqrt{2}}{4}\le \frac{1}{2\sqrt{te^t}}$时,要证$m(a)_{min}=m(\frac{\sqrt{2}}{4})\ge0$,在1楼末尾已证
(2).当$\frac{\sqrt{2}}{4}\ge \frac{1}{2\sqrt{te^t}}$即$te^t\ge 2$时,要证$m(a)_{min}=2\sqrt{te^t}-\sqrt{1+e^{2t}}\ge0$,即要证$4te^t\ge 1+e^{2t}$,因为$\frac{te^t}{2}\ge 1$,即要证$\frac{7te^t}{2}\ge e^{2t}$,即$\frac{7t}{2}\ge e^t$,函数$y=\frac{7t}{2}- e^t,t\le 1$是增函数
又由$te^t\le 2$可得$0.8\le t$,因为$e<3<(\frac{2}{0.8})^{1.25}$,即$81<90=2.5\times36<2.5^5$
而$0.8\le t\le 1$时,$\frac{7t}{2}\ge 2.8>e\ge e^t$成立.

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2019-6-9 16:16
这导数题实在丑,且难,如此一看,全国卷1的导数完全就靠边了。

PS:21题的G点,那坐标,,,,,怎么让人受得了。。。。。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2019-6-9 16:20
回复 8# isee


喵了一眼标答,差不多也是楼主这意思,,,反客为主,先猜后证。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:36 GMT+8

Powered by Discuz!

Processed in 0.011552 seconds, 23 queries