Forgot password?
 Create new account
View 766|Reply 2

一类以封闭代数曲面为界区域的体积

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-6-8 19:32:53 |Read mode
Last edited by 青青子衿 at 2019-6-8 20:24:00\begin{align*}
\operatorname{Volume}\left[\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\leqslant\dfrac{2x}{A}+\dfrac{2y}{B}+\dfrac{2z}{C}\right]
&=\dfrac{4\pi\,abc}{3}\sqrt{\left(\dfrac{a^2}{A^2}+\dfrac{b^2}{B^2}+\dfrac{c^2}{C^2}\right)^3}\\
\\
\operatorname{Volume}\left[\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)^2\leqslant\sqrt{\dfrac{a^2}{A^2}+\dfrac{b^2}{B^2}+\dfrac{c^2}{C^2}}\,\bigg(\dfrac{z}{c}\bigg)\right]
&=\dfrac{\pi\,abc}{3}\sqrt{\dfrac{a^2}{A^2}+\dfrac{b^2}{B^2}+\dfrac{c^2}{C^2}}\\
\\
\operatorname{Volume}\left[\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)^2\leqslant\dfrac{x}{A}+\dfrac{y}{B}+\dfrac{z}{C}\right]
&=\dfrac{\pi\,abc}{3}\sqrt{\dfrac{a^2}{A^2}+\dfrac{b^2}{B^2}+\dfrac{c^2}{C^2}}\\
\end{align*}

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2019-6-9 13:21:35
Last edited by 青青子衿 at 2019-6-10 18:31:00\begin{gather*}
\left\{
\begin{split}
\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2
&\leqslant\dfrac{x}{A}+\dfrac{y}{B}+\dfrac{z}{C}\\
x&\geqslant0\\
y&\geqslant0\\
z&\geqslant0
\end{split}\right.\\
\\
V=\dfrac{abc}{60}\left(\left(\dfrac{a}{A}+\dfrac{b}{B}\right)\left(\dfrac{a^2}{A^2}+\dfrac{b^2}{B^2}\right)+\left(\dfrac{a^2}{A^2}+\dfrac{ab}{AB}+\dfrac{b^2}{B^2}\right)\dfrac{c}{C}+\left(\dfrac{a}{A}+\dfrac{b}{B}\right)\dfrac{c^2}{C^2}+\dfrac{c^3}{C^3}\right)\\
\\
V=\dfrac{abc}{60}\bigg(\left(\dfrac{a}{A}+\dfrac{b}{B}+\dfrac{c}{C}\right)^3-2\left(\dfrac{a}{A}+\dfrac{b}{B}+\dfrac{c}{C}\right)\left(\dfrac{a\,b}{AB}+\dfrac{b\,c}{BC}+\dfrac{a\,c}{AC}\right)+\dfrac{a\,b\,c}{ABC}\bigg)
\end{gather*}

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-2-20 07:49:51
青青子衿 发表于 2019-6-9 06:21
\begin{gather*}
\left\{
\begin{split}
\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2
&\leqslant\dfrac{x}{A}+\dfrac{y}{B}+\dfrac{z}{C}\\
x&\geqslant0\\
y&\geqslant0\\
z&\geqslant0
\end{split}\right.
\end{gather*}
Asymptote HTML format

其中, 曲面的参数是$(u,x)$
由$\cases{u=\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\\u^2=\dfrac{x}{A}+\dfrac{y}{B}+\dfrac{z}{C}}$
解得
y = (b*B*(a*A*u*(c-C*u)-A*c*x+a*C*x))/(a*A*(B*c-b*C)),
z = (c*C*(A*b*x-a*(A*u*(b-B*u)+B*x)))/(a*A*(B*c-b*C))

手机版Mobile version|Leisure Math Forum

2025-4-21 14:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list