青青子衿 发表于 2019-6-9 06:21
\begin{gather*}
\left\{
\begin{split}
\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2
&\leqslant\dfrac{x}{A}+\dfrac{y}{B}+\dfrac{z}{C}\\
x&\geqslant0\\
y&\geqslant0\\
z&\geqslant0
\end{split}\right.
\end{gather*} Asymptote HTML format

其中, 曲面的参数是$(u,x)$
由$\cases{u=\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\\u^2=\dfrac{x}{A}+\dfrac{y}{B}+\dfrac{z}{C}}$
解得
y = (b*B*(a*A*u*(c-C*u)-A*c*x+a*C*x))/(a*A*(B*c-b*C)),
z = (c*C*(A*b*x-a*(A*u*(b-B*u)+B*x)))/(a*A*(B*c-b*C)) |