Forgot password
 Register account
View 1572|Reply 0

[函数] 2019年江苏卷第13题 三角函数和求值

[Copy link]

768

Threads

4685

Posts

26

Reputation

Show all posts

isee posted 2019-6-11 15:44 |Read mode
13. 已知$\frac{\tan \alpha}{\tan\left(\alpha+\frac \pi4\right)}=-\frac 23$,则$\sin \left(2\alpha+\frac \pi4\right)$的值是_________.


积化和差的典范,写个具体的过程——

\begin{align*}
-\frac 23&=\frac{\tan \alpha}{\tan\left(\alpha+\frac \pi4\right)}\\[2ex]
&=\frac{2\sin\alpha \cos\left(\alpha+\frac \pi4\right)}{2\sin\left(\alpha+\frac \pi4\right)\cos\alpha}\\[2ex]
&=\frac{\sin\left(2\alpha+\frac \pi4\right)+\sin\left(-\frac\pi4\right)}{\sin\left(2\alpha+\frac \pi4\right)+\sin \frac\pi4}\\[1em]
\Rightarrow \sin\left(2\alpha+\frac \pi4\right)&=\frac{\sqrt 2}{10}
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 16:03 GMT+8

Powered by Discuz!

Processed in 0.017002 second(s), 21 queries

× Quick Reply To Top Edit