Forgot password?
 Register account
View 2129|Reply 10

[几何] 三角形外心的某种向量表示

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-6-26 17:46 |Read mode
Last edited by 青青子衿 2019-6-27 00:29无论是二维平面中的三角形\(\,\triangle\!\,ABC\,\)的外接圆圆心\(\,Q\,\)以及平面中任意一点\(\,P\,\),
还是三维空间中的三角形\(\,\triangle\!\,ABC\,\)的外接圆圆心\(\,Q\,\)以及空间任意一点\(\,P\,\),都有:
\begin{align*}
\overrightarrow{PQ}&=\dfrac{a\cos(A)\,}{a\cos(A)+b\cos(B)+c\cos(C)}\overrightarrow{PA}+\dfrac{b\cos(B)\,}{a\cos(A)+b\cos(B)+c\cos(C)}\overrightarrow{PB}+\dfrac{c\cos(C)\,}{a\cos(A)+b\cos(B)+c\cos(C)}\overrightarrow{PC}
\end{align*}
但是,向量的系数不是完全由向量(直接)表示的,后来在其他地方看到有如下向量表达式,
代入了一组数据发现是正确的,具体是怎么证明的呢?
\begin{gather*}
\begin{split}
\lambda_1=\overrightarrow{AB}\cdot\overrightarrow{AC}\\
\lambda_2=\overrightarrow{BA}\cdot\overrightarrow{BC}\\
\lambda_3=\overrightarrow{CA}\cdot\overrightarrow{CB}\\
\end{split}\qquad\qquad
\begin{split}
\mu_1=\lambda_2\lambda_3\\
\mu_2=\lambda_1\lambda_3\\
\mu_3=\lambda_1\lambda_2\\
\end{split}\\
\\
\overrightarrow{PQ}=\dfrac{\mu_2+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PA}+\dfrac{\mu_1+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PB}+\dfrac{\mu_1+\mu_2\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PC}
\end{gather*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-6-26 19:57
\begin{align*}
\overrightarrow{PQ}&=\dfrac{a\cos(A)\,}{a\cos(A)+b\cos(B)+c\cos(C)}\overrightarrow{PA}+\dfrac{b\cos(B)\,}{a\cos(A)+b\cos(B)+c\cos(C)}\overrightarrow{PB}+\dfrac{c\cos(C)\,}{a\cos(A)+b\cos(B)+c\cos(C)}\overrightarrow{PC}
\end{align*}
这个分母完全就是摆设,直接去掉即是
\begin{align*}
({a\cos(A)+b\cos(B)+c\cos(C)})\overrightarrow{PQ}&={a\cos(A)\,}\overrightarrow{PA}+{b\cos(B)\,}\overrightarrow{PB}+{c\cos(C)\,}\overrightarrow{PC}
\end{align*}
再用正弦定理,及倍角公式就是显然的了——
\begin{align*}
({\sin(2A)+\sin(2B)+\sin(2C)})\overrightarrow{PQ}&={\sin(2A)\,}(\overrightarrow{PQ}+\vv{QA})+{\sin(2B)\,}(\overrightarrow{PQ}+\vv{QB})+{\sin(2C)\,}(\overrightarrow{PQ}+\vv{QC})
\end{align*}
化简之后,显然成立

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-6-26 20:08
这样一来,只需证:$$\frac{\mu_2+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}=\frac{a\cos(A)\,}{a\cos(A)+b\cos(B)+c\cos(C)}$$

而左边,代具体值代入约分即$$\frac{b\cos A\cos C+c\cos A\cos B}{2(a\cos B\cos C+b\cos A\cos C+c\cos A\cos B)}$$

而分子即:$$b\cos A\cos C+c\cos A\cos B=(b\cos C+c\cos B)\cos A=a\cos A,$$将分母的2倍,化为括号内的三项,两两组合,依分子计算就知道,命题成立。

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2019-6-27 00:25
Last edited by 青青子衿 2019-6-28 21:42回复 6# isee
我验证过下述式子应该没问题呀!
\begin{gather*}
\begin{split}
\lambda_1=\overrightarrow{AB}\cdot\overrightarrow{AC}\\
\lambda_2=\overrightarrow{BA}\cdot\overrightarrow{BC}\\
\lambda_3=\overrightarrow{CA}\cdot\overrightarrow{CB}\\
\end{split}\qquad\qquad
\begin{split}
\mu_1=\lambda_2\lambda_3\\
\mu_2=\lambda_1\lambda_3\\
\mu_3=\lambda_1\lambda_2\\
\end{split}\\
\\
\overrightarrow{PQ}=\dfrac{\mu_2+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PA}+\dfrac{\mu_1+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PB}+\dfrac{\mu_1+\mu_2\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PC}
\end{gather*}
当时用的例子是点\(\,P\,\)落在平面直角坐标系的原点,其他点分别为
点\(\,A(1,3)\,\),点\(\,B(4,1)\,\),点\(\,C(6,6)\,\),于是就有:\begin{align*}
&&&\overrightarrow{PA}=(1,3)&&\overrightarrow{AB}=(3,-2)\\
&&&\overrightarrow{PB}=(4,1)&&\overrightarrow{BC}=(2,5)\\
&&&\overrightarrow{PC}=(6,6)&&\overrightarrow{CA}=(-5,-3)\\
\\
&&&\begin{split}
\lambda_1&=\overrightarrow{AB}\cdot\overrightarrow{AC}=9\\  
\lambda_2&=\overrightarrow{BA}\cdot\overrightarrow{BC}=4\\  
\lambda_3&=\overrightarrow{CA}\cdot\overrightarrow{CB}=25\\
\end{split}&&\begin{split}  
\mu_1&=\lambda_2\lambda_3=100\\  
\mu_2&=\lambda_1\lambda_3=225\\  
\mu_3&=\lambda_1\lambda_2=36\\  
\end{split}
\end{align*}
...
\begin{align*}
\overrightarrow{PQ}&=\quad\begin{split}
\dfrac{\mu_2+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PA}\\
+\dfrac{\mu_1+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PB}\\
+\dfrac{\mu_1+\mu_2\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PC}
\end{split}\\
&=\dfrac{261}{722}\overrightarrow{PA}+\dfrac{68}{361}\overrightarrow{PB}+\dfrac{325}{722}\overrightarrow{PC}\\
&=\left(\dfrac{145}{38},\dfrac{151}{38}\right)
\end{align*}
\begin{align*}
\Big|\overrightarrow{AQ}\Big|^2=\Big|\overrightarrow{BQ}\Big|^2=\Big|\overrightarrow{CQ}\Big|^2=\dfrac{6409}{722}
\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-6-27 13:58
Last edited by isee 2019-6-27 16:13回复 6# isee

顶楼把$\mu_1$的具体值去掉了,那6#就失去了依据,需要再次核算了

====

6#的核算已经完成,此式并不美,也许有行列式或者向量表达式,会更漂亮些。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-6-27 14:40
\(\newcommand\relph[1][=]{\mathrel{\phantom{#1}}}\)
无难度,由已知结论出发
\begin{align*}
&\relph[\iff]\sum\sin2A\cdot\vv{QA}=\bm0\\
&\iff\sum2R\sin A\cos A\cdot\vv{QA}=\bm0\\
&\iff\sum BC\frac{\vv{AB}\cdot\vv{AC}}{AB\cdot AC}\cdot\vv{QA}=\bm0\\
&\iff\sum BC^2\bigl(\vv{AB}\cdot\vv{AC}\bigr)\cdot\vv{QA}=\bm0\\
&\iff\sum\bigl(\vv{BC}\cdot\vv{BA}+\vv{CA}\cdot\vv{CB}\bigr)\bigl(\vv{AB}\cdot\vv{AC}\bigr)\cdot\vv{QA}=\bm0\\
&\iff\sum(\lambda_2+\lambda_3)\lambda_1\vv{QA}=\bm0\\
&\iff\sum(\mu_2+\mu_3)\vv{QA}=\bm0,
\end{align*}然后将 $\vv{QA}$ 等写成 $\vv{PA}-\vv{PQ}$ 等即得要证的结论。

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2019-6-28 21:39
回复 13# kuing
多谢!
\begin{align*}
&&\Big(\begin{matrix}
\sin\left(2A\right)&\sin\left(2B\right)&\sin\left(2C\right)
\end{matrix}\Big)\cdot
\begin{pmatrix}
\vv{QA}\\
\vv{QB}\\
\vv{QC}
\end{pmatrix}
&=\boldsymbol{0}\\
&\iff&R\cdot\Big(\begin{matrix}
2\sin\left(A\right)\cos\left(A\right)&2\sin\left(B\right)\cos\left(B\right)&2\sin\left(C\right)\cos\left(C\right)
\end{matrix}\Big)\!\cdot\!
\begin{pmatrix}
\vv{QA}\\
\vv{QB}\\
\vv{QC}
\end{pmatrix}
&=\boldsymbol{0}\\
&\iff&\Big(\begin{matrix}
R\sin\left(A\right)\cos\left(A\right)&R\sin\left(B\right)\cos\left(B\right)&R\sin\left(C\right)\cos\left(C\right)
\end{matrix}\Big)\!\cdot\!
\begin{pmatrix}
\vv{QA}\\
\vv{QB}\\
\vv{QC}
\end{pmatrix}
&=\boldsymbol{0}\\
&\iff&\Big(\begin{matrix}
\Big|\overrightarrow{BC}\Big|\cdot
\dfrac{\overrightarrow{AB}\cdot\overrightarrow{AC}}{\Big|\overrightarrow{AB}\Big|\,\Big|\overrightarrow{AC}\Big|}
&\Big|\overrightarrow{AC}\Big|\cdot
\dfrac{\overrightarrow{BA}\cdot\overrightarrow{BC}}{\Big|\overrightarrow{BA}\Big|\,\Big|\overrightarrow{BC}\Big|}
&\Big|\overrightarrow{AB}\Big|\cdot
\dfrac{\overrightarrow{CA}\cdot\overrightarrow{CB}}{\Big|\overrightarrow{CA}\Big|\,\Big|\overrightarrow{CB}\Big|}
\end{matrix}\Big)\!\cdot\!
\begin{pmatrix}
\vv{QA}\\
\vv{QB}\\
\vv{QC}
\end{pmatrix}
&=\boldsymbol{0}\\
&\iff&\Big(\begin{matrix}
\Big|\overrightarrow{BC}\Big|^2\cdot
\overrightarrow{AB}\cdot\overrightarrow{AC}
&\Big|\overrightarrow{AC}\Big|^2\cdot
\overrightarrow{BA}\cdot\overrightarrow{BC}
&\Big|\overrightarrow{AB}\Big|^2\cdot
\overrightarrow{CA}\cdot\overrightarrow{CB}
\end{matrix}\Big)\!\cdot\!
\begin{pmatrix}
\vv{QA}\\
\vv{QB}\\
\vv{QC}
\end{pmatrix}
&=\boldsymbol{0}\\
&&\left\{\begin{split}
\left(\overrightarrow{BC}\cdot\overrightarrow{BC}\right)\cdot
\left(\overrightarrow{AB}\cdot\overrightarrow{AC}\right)&=
\left(\overrightarrow{BC}\cdot\overrightarrow{BA}+\overrightarrow{CA}\cdot\overrightarrow{CB}\right)\cdot
\left(\overrightarrow{AB}\cdot\overrightarrow{AC}\right)\\
&\triangleq(\lambda_2+\lambda_3)\lambda_1=\mu_3+\mu_2\\
\left(\overrightarrow{AC}\cdot\overrightarrow{AC}\right)\cdot
\left(\overrightarrow{BA}\cdot\overrightarrow{BC}\right)&=
\left(\overrightarrow{AC}\cdot\overrightarrow{AB}+\overrightarrow{CA}\cdot\overrightarrow{CB}\right)\cdot
\left(\overrightarrow{BA}\cdot\overrightarrow{BC}\right)\\
&\triangleq(\lambda_1+\lambda_3)\lambda_2=\mu_3+\mu_1\\
\left(\overrightarrow{AB}\cdot\overrightarrow{AB}\right)\cdot
\left(\overrightarrow{CA}\cdot\overrightarrow{CB}\right)&=
\left(\overrightarrow{AB}\cdot\overrightarrow{AC}+\overrightarrow{BA}\cdot\overrightarrow{BC}\right)\cdot
\left(\overrightarrow{CA}\cdot\overrightarrow{CB}\right)\\
&\triangleq(\lambda_1+\lambda_2)\lambda_3=\mu_2+\mu_1\\
\end{split}\right.\\
\end{align*}
...
\begin{gather*}
\boxed{
\begin{gather*}
\begin{split}
\lambda_1=\overrightarrow{AB}\cdot\overrightarrow{AC}\\
\lambda_2=\overrightarrow{BA}\cdot\overrightarrow{BC}\\
\lambda_3=\overrightarrow{CA}\cdot\overrightarrow{CB}\\
\end{split}\qquad\qquad
\begin{split}
\mu_1=\lambda_2\lambda_3\\
\mu_2=\lambda_1\lambda_3\\
\mu_3=\lambda_1\lambda_2\\
\end{split}\\
\\
\overrightarrow{PQ}=\dfrac{\mu_2+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PA}+\dfrac{\mu_1+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PB}+\dfrac{\mu_1+\mu_2\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PC}\\
\\
R=\dfrac{1}{2}\sqrt{\dfrac{\left(\lambda_1+\lambda_2\right)\left(\lambda_2+\lambda_3\right)\left(\lambda_1+\lambda_3\right)}{\mu_1+\mu_2+\mu_3}}
\end{gather*}
}
\end{gather*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-6-29 00:16
回复 14# 青青子衿

不知为啥,你这回帖之后,打开这帖时都得卡几秒 mathjax 的公式才编译完……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-6-29 08:31
回复 15# kuing

opera 秒开

应该不会是你电脑配置问题

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-6-29 11:50
回复 16# isee

帖子是秒进,我说的是公式编译时卡,就是由打开帖子到公式完全显示(要看到 14# 最后公式的框框为止)所用的时间。

今天好像比昨晚快了点,不过也要三四秒左右,实拍效果我给你发了个小视频……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-6-29 12:10
回复 17# kuing

一样一样,“大型”公式,显示是需要一点点时间,我这里也是。

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit