|
Author |
青青子衿
Posted 2019-6-27 00:25
Last edited by 青青子衿 2019-6-28 21:42回复 6# isee
我验证过下述式子应该没问题呀!
\begin{gather*}
\begin{split}
\lambda_1=\overrightarrow{AB}\cdot\overrightarrow{AC}\\
\lambda_2=\overrightarrow{BA}\cdot\overrightarrow{BC}\\
\lambda_3=\overrightarrow{CA}\cdot\overrightarrow{CB}\\
\end{split}\qquad\qquad
\begin{split}
\mu_1=\lambda_2\lambda_3\\
\mu_2=\lambda_1\lambda_3\\
\mu_3=\lambda_1\lambda_2\\
\end{split}\\
\\
\overrightarrow{PQ}=\dfrac{\mu_2+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PA}+\dfrac{\mu_1+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PB}+\dfrac{\mu_1+\mu_2\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PC}
\end{gather*}
当时用的例子是点\(\,P\,\)落在平面直角坐标系的原点,其他点分别为
点\(\,A(1,3)\,\),点\(\,B(4,1)\,\),点\(\,C(6,6)\,\),于是就有:\begin{align*}
&&&\overrightarrow{PA}=(1,3)&&\overrightarrow{AB}=(3,-2)\\
&&&\overrightarrow{PB}=(4,1)&&\overrightarrow{BC}=(2,5)\\
&&&\overrightarrow{PC}=(6,6)&&\overrightarrow{CA}=(-5,-3)\\
\\
&&&\begin{split}
\lambda_1&=\overrightarrow{AB}\cdot\overrightarrow{AC}=9\\
\lambda_2&=\overrightarrow{BA}\cdot\overrightarrow{BC}=4\\
\lambda_3&=\overrightarrow{CA}\cdot\overrightarrow{CB}=25\\
\end{split}&&\begin{split}
\mu_1&=\lambda_2\lambda_3=100\\
\mu_2&=\lambda_1\lambda_3=225\\
\mu_3&=\lambda_1\lambda_2=36\\
\end{split}
\end{align*}
...
\begin{align*}
\overrightarrow{PQ}&=\quad\begin{split}
\dfrac{\mu_2+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PA}\\
+\dfrac{\mu_1+\mu_3\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PB}\\
+\dfrac{\mu_1+\mu_2\,}{2\left(\mu_1+\mu_2+\mu_3\right)}\overrightarrow{PC}
\end{split}\\
&=\dfrac{261}{722}\overrightarrow{PA}+\dfrac{68}{361}\overrightarrow{PB}+\dfrac{325}{722}\overrightarrow{PC}\\
&=\left(\dfrac{145}{38},\dfrac{151}{38}\right)
\end{align*}
\begin{align*}
\Big|\overrightarrow{AQ}\Big|^2=\Big|\overrightarrow{BQ}\Big|^2=\Big|\overrightarrow{CQ}\Big|^2=\dfrac{6409}{722}
\end{align*} |
|