Forgot password
 Register account
View 1338|Reply 4

[数论] 有关组合数的同余问题

[Copy link]

461

Threads

957

Posts

4

Reputation

Show all posts

青青子衿 posted 2019-6-28 13:30 |Read mode
Last edited by 青青子衿 2019-6-28 14:25\begin{align*}
\sum\limits_{\substack{0\leqslant\,\!k\leqslant\,\!l\\k+l=n}}\left(-1\right)^l\binom{l}{k}=\begin{cases}
\phantom{+}1&&n\equiv0\pmod{3}\\
-1&&n\equiv1\pmod{3}\\
\phantom{+}0&&n\equiv2\pmod{3}
\end{cases}
\end{align*}

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2019-6-28 14:12
回复 1# 青青子衿

都是$n\equiv 0\pmod{3}$ ?

461

Threads

957

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2019-6-28 14:25
回复 2# isee
emmmm,这几天心不在焉,老是敲错
(已经纠正)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-6-28 14:32
想让 cases 第一列右对齐,可以用我自定义的 \led ... \endled,就不用手动加 \phantom 了。
... = \led
1 &&& n\equiv0\pmod3\\
-1 &&& n\equiv1\pmod3\\
0 &&& n\equiv2\pmod3
\endled
效果:
\[... = \led
1 &&& n\equiv0\pmod3\\
-1 &&& n\equiv1\pmod3\\
0 &&& n\equiv2\pmod3
\endled\]

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2019-6-28 18:55
$\displaystyle a_n=\sum_{0\le k\le l\atop k+1=n}
(-1)^l\binom{l}{k}=\sum_{k=0}^\infty
(-1)^{n-k}\binom{n-k}{k}$

$a_{n+1}=-(a_n+a_{n-1}),a_{n+3}=a_n$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:21 GMT+8

Powered by Discuz!

Processed in 0.014292 seconds, 23 queries