Forgot password?
 Register account
View 1326|Reply 4

[数论] 有关组合数的同余问题

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-6-28 13:30 |Read mode
Last edited by 青青子衿 2019-6-28 14:25\begin{align*}
\sum\limits_{\substack{0\leqslant\,\!k\leqslant\,\!l\\k+l=n}}\left(-1\right)^l\binom{l}{k}=\begin{cases}
\phantom{+}1&&n\equiv0\pmod{3}\\
-1&&n\equiv1\pmod{3}\\
\phantom{+}0&&n\equiv2\pmod{3}
\end{cases}
\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-6-28 14:12
回复 1# 青青子衿

都是$n\equiv 0\pmod{3}$ ?

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2019-6-28 14:25
回复 2# isee
emmmm,这几天心不在焉,老是敲错
(已经纠正)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-6-28 14:32
想让 cases 第一列右对齐,可以用我自定义的 \led ... \endled,就不用手动加 \phantom 了。
... = \led
1 &&& n\equiv0\pmod3\\
-1 &&& n\equiv1\pmod3\\
0 &&& n\equiv2\pmod3
\endled
效果:
\[... = \led
1 &&& n\equiv0\pmod3\\
-1 &&& n\equiv1\pmod3\\
0 &&& n\equiv2\pmod3
\endled\]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2019-6-28 18:55
$\displaystyle a_n=\sum_{0\le k\le l\atop k+1=n}
(-1)^l\binom{l}{k}=\sum_{k=0}^\infty
(-1)^{n-k}\binom{n-k}{k}$

$a_{n+1}=-(a_n+a_{n-1}),a_{n+3}=a_n$

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit