|
(1)设正数$a,b,c$满足$a^2+b^2+c^2+2abc=1$,求证:$(a+b)^2+(b+c)^3+(c+a)^2\leqslant 3$;
(2)设正数$a,b,c$满足$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\geqslant a+b+c$,求证:$\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\geqslant \dfrac{3abc}{ab+bc+ca}+2abc$.
(3)设正数$a,b,c$满足$ab+bc+ca=a+b+c$,求证:$\dfrac{a^2}{1+a+b^2}+\dfrac{b^2}{1+b+c^2}+\dfrac{c^2}{1+c+a^2}\geqslant 1$. |
|