Forgot password?
 Register account
View 1429|Reply 4

[数列] 四川预赛题数列

[Copy link]

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

dahool Posted 2019-7-2 08:44 |Read mode
Last edited by dahool 2019-7-2 10:29已知数列${a_n}$满足:$$a_n=[(2+\sqrt{5})^n+\frac{1}{2^n}]$$其中$[x]$表示不超过实数$x$的最大整数,设$C$为实数,且对任意的正整数$n$,都有$$\sum_{i=1}^n\frac{1}{a_ia_{i+2}} \leqslant C$$则$C$的最小值是?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-2 09:17
易证
\[a_n=\bigl(2+\sqrt5\bigr)^n+\bigl(2-\sqrt5\bigr)^n,\]从而由特征方程理论可知
\[a_{n+2}=4a_{n+1}+a_n,\]得到
\[\frac1{a_ia_{i+1}}=\frac4{a_ia_{i+2}}+\frac1{a_{i+1}a_{i+2}},\]然后,还没想出怎么进行下去,但先暂停一下……
因为突然感觉是不是题目下标打错了,事关如果是 `\sum\frac1{a_ia_{i+2}}` 那就可以裂项,严重怀疑ing……
哪年的竞赛题麻烦说一下,好查证……

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2019-7-2 10:29
回复 2# kuing

对不起,是打错了,你说的那个对,我改一下,2019年的预赛题

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2019-7-2 10:30
回复 2# kuing

想明白了,谢谢呀

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2019-7-2 11:09
已知$a_0=1,a_1=1,a_{n+2}=a_{n+1}+a_n$,则$  \sum_{i=1}^{+\infty }\frac{1}{a_ia_{i+2}}=$

浙大自招  与今年的这道四川预赛题是不是惊人相似?

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit