Forgot password?
 Register account
View 1919|Reply 6

[函数] 导数恒成立,求参数范围

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2019-7-3 10:11 |Read mode
导数1.png

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2019-7-4 08:19
回复 1# guanmo1


分参老套路
\[\frac{e^x-1-x}{x\ln(x+1)}>a\]
变成找左边最小值
\[\frac{e^x-1-x}{x\ln(x+1)}\ge\frac{\frac{1}{2}x^2}{x\ln(x+1)}\ge\frac{\frac{1}{2}x^2}{x^2}=\frac{1}{2}\]
易证$x=0$时极限取等,因此$a\le\frac{1}{2}$

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2019-7-4 09:00
Last edited by guanmo1 2019-7-4 09:28回复 2# 战巡

赞,可是由于高中学生所学有限,有更初等的解法吗?

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2019-7-4 09:39
回复 3# guanmo1


这还不初等?没用级数展开啊
$e^x-1-x\ge \frac{1}{2}x^2$,$\ln(x+1)\le x$这在高中应该算常识了吧,即便不知道的也很容易证明

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2019-7-4 15:41
回复 4# 战巡


    高中现在连极限都不讲。那个极限取等在高考中是要“扣分”的。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2019-7-4 16:11
回复 5# guanmo1


不取极限也不过是简单的从大于等于变成大于,我写极限取等不过是为了表述严谨,变通一下不就完了

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2019-7-5 07:16
Last edited by 走走看看 2019-7-5 07:28回复 6# 战巡


    $"e^x−1−x≥\frac{1}{2}x^2 ,"$确实想不到啊,因此在考试时只能仰望天花板了,祈求神仙帮忙。

     这道题的1/2只能在x=0处取得,因此,不用洛必达法则好像不可求,涉嫌超纲了。

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit