Forgot password?
 Register account
View 1689|Reply 1

[函数] 二次函数不等式

[Copy link]

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2019-7-4 12:55 |Read mode
设$a,b,c$为常数且$a>0$,证明:当$x \geqslant 2\max\left\{\dfrac{\abs{b}}{a},\sqrt{\dfrac{\abs{c}}{a}}\right\}$时,\[\frac{a}{4}x^2\leqslant ax^2+bx+c\leqslant\frac{7a}{4}x^2.\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-1-14 15:59
这有什么难的吗?

首先可以不妨设 `a=1`(如果不明白,作置换 `(b,c)\to(ab',ac')`),而不等式左右两边的根分别为
\[\frac23\bigl(-b\pm\sqrt{b^2-3c}\bigr),\,\frac23\bigl(b\pm\sqrt{b^2+3c}\bigr)\]则只需证明以下两式成立
\begin{align*}
3\max\bigl\{\abs b,\sqrt{\abs c}\bigr\}&\geqslant-b+\sqrt{b^2-3c},\\
3\max\bigl\{\abs b,\sqrt{\abs c}\bigr\}&\geqslant b+\sqrt{b^2+3c},
\end{align*}这只需证明
\[
3\max\bigl\{\abs b,\sqrt{\abs c}\bigr\}\geqslant\abs b+\sqrt{\abs b^2+3\abs c},
\]也就是
\[3\max\{m,n\}\geqslant m+\sqrt{m^2+3n^2},\]其中 `m`, `n\geqslant0`,而显然有 `m\leqslant\max\{m,n\}` 且 `\sqrt{m^2+3n^2}\leqslant2\max\{m,n\}`,所以不等式成立。

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit