Forgot password?
 Register account
View 1862|Reply 3

[不等式] 含max$(3a-1)^2$分式不等式

[Copy link]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2019-7-9 09:05 |Read mode
$a,b,c>0,~a+b+c=1$

證明 $\displaystyle \sum _{cyc}\frac {a^2}{1-a}\geq \frac{1}{2}(1+\max\{(3a-1)^2,(3b-1)^2,(3c-1)^2\})$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-9 14:21
这题明显是用切线法出的,先计算出 a^2/(1-a) 的取等切线是 (5a-1)/4,然后作差配方再 CS 即可。

证明:不妨设 `\max\{(3a-1)^2,(3b-1)^2,(3c-1)^2\}=(3a-1)^2`,则
\begin{align*}
\sum\frac{a^2}{1-a}-\frac12&=\sum\left( \frac{a^2}{1-a}-\frac{5a-1}4 \right)\\
&=\sum\frac{(3a-1)^2}{4(1-a)}\\
&\geqslant\frac{(\abs{3a-1}+\abs{3b-1}+\abs{3c-1})^2}{4(1-a)+4(1-b)+4(1-c)}\\
&\geqslant\frac{(\abs{3a-1}+\abs{3b-1+3c-1})^2}{4(1-a)+4(1-b)+4(1-c)}\\
&=\frac{(\abs{3a-1}+\abs{1-3a})^2}8\\
&=\frac{(3a-1)^2}2.
\end{align*}即得证。

Rate

Number of participants 1威望 +1 Collapse Reason
tommywong + 1 郭子伟牛逼!

View Rating Log

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-9 14:33
还可以仅对其中两项用 CS,如
\begin{align*}
\sum\frac{(3a-1)^2}{4(1-a)}
&\geqslant\frac{(3a-1)^2}{4(1-a)}+\frac{(3b-1+3c-1)^2}{4(1-b)+4(1-c)}\\
&=\frac{(3a-1)^2}{4(1-a)}+\frac{(1-3a)^2}{4(1+a)}\\
&=\frac{(3a-1)^2}{2(1-a^2)},
\end{align*}这样一来,就可以得出以下强加式
\[\sum\frac{a^2}{1-a}\geqslant\frac12\left(1+\max\left\{\frac{(3a-1)^2}{1-a^2},\frac{(3b-1)^2}{1-b^2},\frac{(3c-1)^2}{1-c^2}\right\}\right).\]

Rate

Number of participants 1威望 +1 Collapse Reason
tommywong + 1 郭子伟牛逼!

View Rating Log

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2019-8-3 21:19
也来几道含max的不等式题目
blog10.jpg
妙不可言,不明其妙,不着一字,各释其妙!

Mobile version|Discuz Math Forum

2025-5-31 11:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit