Forgot password?
 Register account
View 1494|Reply 2

[不等式] 關於三角形的不等式②

[Copy link]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2019-7-13 08:16 |Read mode
證明 $\displaystyle \frac{9}{4}\frac{1}{\sum h_a}\ge
\sum\frac{1}{(\sqrt{r_b}+\sqrt{r_c})^2}\ge
\frac{3}{4}\frac{\sqrt{3}}{s}$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-13 14:43
右边比较简单,先搞它。

易证 `r_ar_b+r_br_c+r_cr_a=s^2`,故由伊朗 96 不等式,有
\[\sum\frac1{\bigl(\sqrt{r_b}+\sqrt{r_c}\bigr)^2}\geqslant\frac9{4\bigl(\sqrt{r_ar_b}+\sqrt{r_br_c}+\sqrt{r_cr_a}\bigr)}\geqslant\frac{3\sqrt3}{4\sqrt{r_ar_b+r_br_c+r_cr_a}}=\frac{3\sqrt3}{4s};\]

Rate

Number of participants 1威望 +1 Collapse Reason
tommywong + 1 郭子伟牛逼!

View Rating Log

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-13 16:33
先别说牛逼,左边我还证不出哩……`h_a` 虽然可以用 `r_b`, `r_c` 表示,但式子不像之前那样简洁,不好处理,先歇会

Mobile version|Discuz Math Forum

2025-5-31 11:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit